ON THE SUBNORMALISER CONDITION FOR SUBGROUPS

Bui Xuan Hai and **Tong Viet Phi Hung**

Department of Mathematics-Informatics Vietnam National University of HCM-City 227 Nguyen Van Cu street, Dist. 5 Ho Chi Minh City, Vietnam e-mail: bxhai@mathdep.hcmuns.edu.vn; tvphihung@mathdep.hcmuns.edu.vn

Abstract

A subgroup *H* of *G* is said to satisfy the *subnormaliser condition* in *G* if for every subgroup *K* of *G* such that $H \leq K$, then $N_G(K) \leq$ $N_G(H)$. In this paper, we study this embedding property of subgroups. We establish the relation between groups, whose subgroups satisfy the subnormaliser condition and the so called \overline{T} *-groups*, i.e., the groups, in which the normality is a transitive relation.

Let G be a group, D a subgroup, A a subset and x, y elements of G. Throughout in this paper, we denote by $y^x := x^{-1}yx, D^x := x^{-1}Dx, D^A :=$ $\langle D^a | a \in A \rangle$, the subgroup of G generated by the set $\cup_{a \in A} D^a$. Let D be a subgroup of a group G. If $D \leq H \leq G$, then we say that a subgroup H is an *intermediate subgroup of* G *with respest to* D. If D is understood from the context and there are no confusions, then we can say briefly that H is an *intermediate subgroup* of G . An intermediate subgroup H of a group G is called D-complete (briefly *complete* if there is no confusion) if $D^H = H$. A subgroup D is said to be *polynormal* in G if $D^{(x)}$ is D-complete for each element x in G. We say that a subgroup D is *abnormal* (resp. *weakly abnormal*) in a group G, if for every element $x \in G$ we have $x \in \langle D, D^x \rangle$ (resp. $x \in D^{\langle x \rangle}$). A subgroup D is called *pronormal* (resp. *weakly pronormal*) in G, if for every element $x \in G$, there exists an element $u \in \langle D, D^x \rangle$ (resp. $u \in D^{\langle x \rangle}$) such that $D^x = D^u$. A subgroup D is *paranormal* in G if for every element $x \in G$ the subgroup $\langle D, D^x \rangle$ is D-complete. It is well known that all normal, abnormal,

Key words: polynormal subgroup, subnormaliser, finite supersolvable group.
2000 Mathematics Subject Classification: 20F16, 20F19 2000 Mathematics Subject Classification: 20F16, 20F19

weakly abnormal, pronormal, weakly pronormal and paranormal subgroups are polynormal subgroups. A subgroup H of G is said to satisfy the *subnormaliser condition* in G if for every subgroup K of G such that $H \leq K$, it follows that $N_G(K) \leq N_G(H)$. It is clear that a polynormal subgroup satisfies the subnormaliser condition. The inverse is not true. The counterexample will be given in the following:

Example

Let G be a group given by generators a, b, c, d, e, f and the following defined relations:

> $a^3 = b^2 = c^2 = d^3 = e^3 = f^3 = 1$, $[b, a] = c, [c, a] = bc, [d, a] = d^2e, [e, a] = e^2f,$ $[f, a] = df^2, cb = bc, db = bd,$ $[e, b] = e, [f, b] = f, [d, c] = d, [e, c] = e,$ $fc = cf, ed = de, fd = df, fe = ef.$

Consider the subgroup $D = < b, f >$ of G. Then, a simple verification shows that D satisfies the subnormaliser condition in G . On the other hand, we have

$$
N_G(D) = \langle b, c, d, f \rangle, D^{\langle a \rangle} = \langle b, c, f, d, e \rangle \text{ and } D^{D^{\langle a \rangle}} = \langle b, f, e \rangle \neq D^{\langle a \rangle}.
$$

Hence D is not polynormal in G .

It is easy to show that, if D is polynormal in G then every intermediate subgroup of G with respect to D is polynormal too (see also [1]). So, every such a subgroup satisfies the subnormaliser condition. In the following we show that the converse is also true.

Theorem 1 *Let* D *be a subgroup of a group* G. *Then* D *is polynormal in* G *if and only if every D-complete intermediate subgroup of* G *satisfies the subnormaliser condition in* G.

To prove this theorem, we need some auxiliary lemmas. In the following, the proofs of lemmas 1, 2 and 3 are easy and will be omitted.

Lemma 1 *Let* φ : $G \to G'$ *be a group homomorphism, D a subgroup of G containing* kerϕ *and* F *an intermediate subgroup of* G*. Then, the following statements hold:*

(i) $\varphi(N_G(D)) = N_{\varphi(G)}(\varphi(D));$

(*ii*) D *is normal in* F *if and only if* $\varphi(D)$ *is normal in* $\varphi(F)$;

(*iii*) $\varphi(F)$ *is complete in* $\varphi(G)$ *with respect to* $\varphi(D)$ *if and only if* F *is complete in* G *with respect to* D;

(iv) *A subgroup* D *satisfies the subnormaliser condition (resp.* D *is polynormal, paranormal, pronormal) in* G *if and only if* $\varphi(D)$ *satisfies the sub-*

normaliser condition (resp. $\varphi(D)$ *is polynormal, paranormal, pronormal) in* $\varphi(G)$.

Corollary 1 *Let* H *be a normal subgroup of a group* G *and* D *a subgroup of* G *containing* H*. Then,* D *satisfies the subnormaliser condition (resp.* D *is polynormal, paranormal, pronormal) in* G *if and only if the quotient group* D/H *satisfies the subnormaliser condition (resp.* D/H *is polynormal, paranormal, pronormal) in* G/H*.*

Lemma 2 *Let* D *be a subgroup of a group* G *and* K *a subgroup of* G *containing* D*. If* D *satisfies the subnormaliser condition (resp.* D *is polynormal, paranormal, pronormal) in* G*, then* D *satisfies the subnormaliser condition (resp.* D *is polynormal, paranormal, pronormal) in* K.

Lemma 3 *Let* D *be a subgroup of a group* G. *Then, the following statements hold:*

(i) *If* D *is a subnormal subgroup, satisfying the subnormaliser condition in* G*, then* D *is normal in* G;

(ii) *If* D *is polynormal in* G*, then* D *satisfies the subnormaliser condition in* G.

Proof of Theorem 1 Suppose that D is polynormal in G. Then, every Dcomplete intermediate subgroup of G is polynormal in G , so by Lemma 3 (ii), it satisfies the subnormaliser condition in G. Conversely, suppose that every D-complete intermediate subgroup of G satisfies the subnormaliser condition in G. We will prove that D is polynormal in G. Now, for any $x \in G$, put $K := < D, x > \text{and } H := D^{< x>}$. We have $H = D^K \trianglelefteq K$. Consider the following descending series of subgroups H_{ν} :

$$
H_0 = H, H_1 = D^{H_0}, \dots, H_{\nu+1} = D^{H_{\nu}}, \text{ and } H_{\mu} = \bigcap_{\nu < \mu} H_{\nu}
$$

for a limitting ordinal number μ . Clearly, in some finite or transfinite step, the series $\{H_{\nu}\}\nu$ will be stable, i.e., there exists some minimal ordinal number ρ such that

$$
H_{\rho+1}=D^{H_{\rho}}=H_{\rho}.
$$

Put $H^* = H_\rho = H_{\rho+1}$. Clearly, H^* is a complete intermediate subgroup of G with respect to D and $H^* = H_\rho \trianglelefteq H_{\rho-1} \trianglelefteq \cdots \trianglelefteq H_1 \trianglelefteq H_0 = H$. Since H^* is D complete by gunposition H^* asticles the gunpormaliser condition in C. We D-complete, by supposition H^* satisfies the subnormaliser condition in G. We will prove that H^* is normal in H. Thus, suppose that H^* is not normal in H. Then, there exists some ordinal number λ with $0 < \lambda \leq \rho$ such that H^* is not normal in $H_{\lambda-1}$, but $H^* \nightharpoonup H_{\lambda} \nightharpoonup H_{\lambda-1}$. Since H^* satisfies the subnormaliser condition in G, by Lemma 2, H^* satisfies the subnormaliser condition in $H_{\lambda-1}$, and it follows that H^* is normal in $H_{\lambda-1}$ (by applying Lemma 3(i)). This is

a contradiction. So, H^* is normal in H. Moreover, since $H \subseteq K$, by Lemma 2 and Lemma 3(*i*), it follows that H^* is normal in K. Since $D \leq H^* \leq K$, $H = D^K \leq H^* \leq H$, hence $H^* = H$. Therefore, $H = D^{(x)}$ is D-complete in G for every $x \in G$. So, D is polynormal in G. The proof of the theorem is now completed. \Box

Recall that a subgroup D is *weakly abnormal* in a group G if for any $x \in$ G, we have $x \in D^{< x>}$. Every weakly abnormal subgroup in a group G is polynormal in G. Moreover, it is well-known that a subgroup D of a group G is weakly abnormal in G if and only if every intermediate subgroup of G with respect to D is self-normalizing. Applying Theorem 1, we can obtain some stronger result as the following:

Theorem 2 *Let* D *be a subgroup of a group* G. *Then* D *is weakly abnormal in* G *if and only if every* D*-complete intermediate subgroup of* G *is self-normalizing.*

Proof Suppose that every D-complete intermediate subgroup of G is selfnormalizing. Then, clearly that, every D-complete intermediate subgroup of G satisfies the subnormaliser condition in G . By Theorem 1, D is polynormal in G. It is well- known that, D is polynormal in G iff D^H is D-complete for every intermediate subgroup H of G . So, for such a subgroup H , we have $H \leq N_G(D^H) = D^H$, hence $H = D^H$ is D-complete. By supposition, H is self-normalizing. Thus D is weakly abnormal in G self-normalizing. Thus, D is weakly abnormal in G .

Recall that a subgroup D is *paranormal* in G if for each element $x \in G$, the subgroup $\langle D, D^x \rangle$ is D-complete. It is well-known that if D is a polynormal subgroup of G , then D is paranormal in G iff for every D -complete subgroup F and every $x \in G$, from the condition $D^x \leq N_G(F)$, it follows that $D^x \leq F$. In the connection with this property, we introduce the following concept:

Definition 1 A subgroup D is called *quasi-paranormal* in a group G, if for any D-complete intermediate subgroup F of G, and any $x \in G$, from the condition $D^x \leq N_G(F)$, it follows that $D^x \leq F$.

Clearly, every paranormal subgroup of G is quasi-paranormal. Moreover, a subgroup D is paranormal in G iff D is quasi-paranormal and polynormal in G.

Lemma 4 *Every quasi-paranormal subgroup* D *of a group* G *satisfies the subnormaliser condition in* G*.*

Proof Suppose that D is quasi-paranormal in G and $D \leq K \leq G$. Then, for any $x \in N_G(K)$, we have $D^x \leq K^x = K \leq N_G(D)$. Since D is quasi-

paranormal in G, it follows that $D^x \leq D$. Similarly, we have $D^{x^{-1}} \leq D$. Hence $D^x = D$ or $x \in N_G(D)$. Therefore $N_G(K) \leq N_G(D)$. Hence, D satisfies the subnormaliser condition in G. subnormaliser condition in G.

Lemma 5 *If* D *is paranormal in* G*, then every* D*-complete intermediate subgroup of* G *is paranormal in* G.

Proof Suppose that D is paranormal in G and F is a D-complete intemediate subgroup of G. Then, for any $x \in G$, we have $D^{}=< D, D^x>$. Since $D^F = F$, it follows $(D^x)^{F^x} = F^x$. By virtue of this fact, we have

$$
\langle F, F^x \rangle \le \langle D, D^x \rangle \langle F, F^x \rangle = (D^{\langle D, D^x \rangle})^{\langle F, F^x \rangle} \le F^{\langle F, F^x \rangle} \le \langle F, F^x \rangle.
$$

Hence $\langle F, F^x \rangle = F^{\langle F, F^x \rangle}$ or $\langle F, F^x \rangle$ is F-complete subgroup of G. Therefore, F is paranormal in G .

Theorem 3 *Let* D *be a subgroup of a group* G. *Then* D *is paranormal in* G *if and only if every* D*-complete intermediate subgroup of* G *is quasi-paranormal in* G*.*

Proof Suppose that D is paranormal in G. Then by Lemma 5, every Dcomplete intermediate subgroup of G is paranormal in G and hence, it is quasiparanormal in G. Conversely, suppose that every D-complete intermediate subgroup of G is quasi-paranormal in G. By Lemma 4, it satisfies the subnormaliser condition in G . According to Theorem 1, D is polynormal in G . Hence, D is paranormal in G.

A subgroup H of a group G is called an $\mathcal{H}\text{-subgroup}$ if for every $g \in G$, $H^g \cap N_G(H) \leq H$. Let H be an H-subgroup of a group G and $K \leq G$ such that $H \leq K$. Then for any $x \in N_G(K)$, we have $H^x \leq K^x = K \leq N_G(H)$.
Since H is an \mathcal{H} submass it follows that $H^x \leq H$. This conclusion is also Since H is an H -subgroup, it follows that $H^x \leq H$. This conclusion is also true for $x^{-1} \in N_G(K)$. Therefore, $H^x = H$ or $N_G(K) \leq N_G(H)$. So, every H*-subgroup of a group* G *satisfies the subnormaliser condition in* G.

Proposition 1 *If* D *is a subgroup of a group* G *such that every* D*-complete intermediate subgroup of* G *is an* H*-subgroup of* G*, then* D *is paranormal in* G.

Proof Let D be such a subgroup as in the proposition. Then, as we have noted above, every D-complete intermediate subgroup of G satisfies the subnormaliser condition in G . From Theorem 1, it follows that D is polynormal in G. For any D-complete intermediate subgroup F and any $x \in G$ such that $D^x \leq N_G(F)$, we will prove that $D^x \leq F$. In fact, since F is an H-subgroup and $D^x \leq N_G(F)$, it follows that $D^x \leq F^x \cap N_G(F) \leq F$. Therefore $D^x \leq F$. Thus, D is polynormal and quasi-paranormal in G . Hence, D is paranormal in $G.$

The subgroup embedding property of the subnormaliser condition was introduced by V. I. Mysovskikh in [8] and it was investigated in [4]. For finite groups, A. Ballester-Bolinches and R. Esteban-Romero established the relation between subgroups with the embedding property above and the so called T*groups*, groups in which every subnormal subgroup is normal. From Theorem A in [4], we see that a finite group G is a T-group if and only if every subgroup of G satisfies the subnormaliser condition in G. A group G is called a \overline{T} -group if each subgroup of G is a T-group. A finite T-group is a \overline{T} -group (see [11], Th. 1*). So, combining two results above we can see that *"If every subgroup of a finite group* G *satisfies the subnormaliser condition in* G *then* G *is a* T*-group."* Here, we prove that in the proposition above the condition of a finiteness should be omitted. In fact, we prove the following more general result:

Theorem 4 *A group G is a* \overline{T} -group *if and only if every subgroup of G satisfies the subnormaliser condition in* G*.*

Proof Suppose that G is a \overline{T} -group and D is a subgroup of G. By Theorem 1 [5], D is polynormal in G . It follows that D satisfies the subnormaliser condition in G.

Conversely, suppose that every subgroup of G satisfies the subnormaliser condition in G. Then, for $D \leq H \leq G$, D satisfies the subnormaliser condition in H. Hence, to prove that G is a \overline{T} -group, it suffices to show that G is a T -group. Thus, let D be a subnormal subgroup of G and suppose that $D\trianglelefteq K\trianglelefteq L$. Since D satisfies the subnormaliser condition in G, it follows that $L \leq N_G(K) \leq N_G(D)$. Hence, $D \trianglelefteq L$. Now, by induction, we conclude that D
is narmal in C. The proof of our theorem is now completed is normal in G. The proof of our theorem is now completed. \Box

Recall that a group G is an FC -group if every element in G has only a finite number of conjugates.

Corollary 2 Let G be a locally solvable T -group. If G is an FC -group then *every subgroup of* G *satisfies the subnormaliser condition in* G*.*

Proof By Corollary 3.8 [7], G is a \overline{T} -group. Now, the conclusion is obtained from Theorem 4.

We say that a finite group G *satisfies the condition* C_p (where p is a prime divisor of $|G|$) if every subgroup of a Sylow p-subgroup P of G is normal in $N_G(P)$. In [11], D.J.S. Robinson showed that a finite group G is a \overline{T} -group iff it satisfies the condition C_p for every prime divisor p of $|G|$. We use this fact

to prove the following:

Corollary 3 Let G be a locally finite group. Then G is a solvable \overline{T} -group if *and only if every cyclic subgroup of* G *satisfies the subnormaliser condition in* G*.*

Proof If G is a \overline{T} -group then the conclusion follows from Theorem 4. Conversely, suppose that every cyclic subgroup of G satisfies the subnormaliser condition in G. Let H be a finitely generated subgroup of G. Then H is finite and every cyclic subgroup of H satisfies the subnormaliser condition in H . We show that H satisfies the C_p condition for every prime divisor p of |H|. Let P be a Sylow p-subgroup of H and K be a subgroup of P . Then, for every x in K, since P is nilpotent, the cyclic subgroup generated by x is subnormal and satisfies the subnormaliser condition in $N_H(P)$, so $\langle x \rangle \le N_H(P)$. It follows that $K \leq N_H(P)$. Using the fact, mentioned above we conclude that H is a
T group. By Capallony 2.10. C is a T group. As the hypotheses are inherited T-group. By Corollary 2 [10], G is a T-group. As the hypotheses are inherited by every subgroup of G, it follows that G is a \overline{T} -group. By the Corollary of Theorem 1^* [11], G is solvable.

Corollary 4 *Let* G *be a periodic* FC-group. If every cyclic subgroup of G *satisfies the subnormaliser condition in* G *then* G *is a solvable* \overline{T} *-group.*

Proof If G is a periodic FC -group then G is locally normal and hence it is locally finite (see 15.1.12 [12]). So, the conclusion follows from Corollary 3. \Box

Theorem 5 Let G be an FC-group. Then G is a solvable T-group if and only *if every its cyclic subgroup satisfies the subnormaliser condition in* G*.*

Proof If G is a solvable T-group then by Corollary 2, every its cyclic subgroup satisfies the subnormaliser condition in G. Conversely, suppose that every cyclic subgroup of G satisfies the subnormaliser condition in G . We have to prove that G is a solvable T-group. If G is periodic or nilpotent then the result is clear by argument above and Corollary 4. So, we can assume that G is not periodic nor nilpotent. Denote by Z the center of G. By $15.1.16$ [12], it follows that there exists a non-periodic element z in Z . By 15.1.7 [12], G' is periodic. It follows from Corollary 4 and Theorem 2.3.1 [9] that G'' is abelian and periodic. If G " is not contained in Z then there exists a non-central periodic element a in G' such that the cyclic subgroup generated by a is subnormal in G and hence it is normal in G . If $G^"$ is contained in Z then G' is nilpotent. Since G is not nilpotent, it follows that G' has nontrivial intersection with Z . So, there exists an element in G' having the same propety as a in the case above. Thus, there always exists a non-central periodic element a such that $\langle a \rangle$ is normal in G. If $b = az$ then b is not periodic and $\langle b \rangle$ is normal in G. Since a is not central, there

exists g in G such that $a^g := g^{-1}ag \neq a$. Since $\langle a \rangle$ and $\langle b \rangle$ are normal in G, it follows that there exist integer numbers $i, j > 1$ such that $a^g = a^i, b^g = b^j$. Hence $z^{j-1} = a^{i-j}$. Since a is an element of a finite order, it follows that z is an element of a finite order. This contradiction proves our theorem. \Box

Corollary 5 *Let* G *be an* FC-group. Then G is a solvable T-group if and only *if* G *is a* \overline{T} *-group.*

Proof By applying Theorem 5 and Corollary 2.

Note that Theorem 1* [11] and Corollary 3.8 [7] are particular cases of Corollary 5. In [4], the authors proved that a finite group G is a solvable T group iff all its subgroups are H -subgroups. The following theorem shows that this result is also true for FC -groups.

Theorem 6 Let G be an FC-group. Then the following conditions are equiv*alent:*

(i) G *is a solvable* T*-group;*

- *(ii) every subgroup of* G *is an* H*-subgroup;*
- *(iii) every cyclic subgroup of* G *is an* H*-subgroup.*

To prove this theorem, we need the following lemma:

Lemma 6 Let G be a periodic FC-group. If G is a solvable T-group then every *cyclic subgroup of* G *is an* H*-subgroup.*

Proof Let H be a subgroup generated by $a \in G$. We will prove that for any $g \in G$, $H^g \cap N_G(H) \leq H$. For any $1 \neq x \in H^g \cap N_G(H)$, $x = (a^i)^g$ for some positive integer number *i*. Put $L = \langle a^i \rangle, K = \langle a, g \rangle$. Then, as we have mentioned in the proof of Corollary 4 above, K is a finite subgroup of G . Therefore, K is a finite solvable T-group and $x \in L^g \cap N_K(L)$. By Theorem 1 [4], L is an \mathcal{H} -subgroup of G, hence $x \in L \leq H$. [4], L is an $\mathcal{H}\text{-subgroup of }G$, hence $x \in L \leq H$.

Proof of Theorem 6 If G is abelian then the conclusions are clear. So, we can assume that G is nonabelian.

 $(i) \Rightarrow (iii)$ By Theorem 6.1.1 [9] and Corollary 5, G is periodic. The conclusion is now obtained by applying Lemma 6.

 $(iii) \Rightarrow (ii)$ Since every H-subgroup of G satisfies the subnormaliser condition in G, by Theorem 5, G is a solvable T-group. So, Theorem 6.1.1 [9], G is a periodic solvable T-group. By Theorem 3.9 [7], every subgroup of G is pronormal in G . Now, let H be an arbitrary subgroup of G . We have to show that $H^g \cap N_G(H) \leq H$, for any $g \in G$. In fact, let us consider an arbitrary element $x \in H^g \cap N_G(H)$. Then, there exists some element $a \in H$ such that $x = a^g$. Put $L := \langle a \rangle^H$ and $K := \langle L, g \rangle$. Then $L \leq H, L \leq K$ and K is a finite solvable T-group. By supposition, every cyclic subgroup of L is an H -subgroup of G, so it is also an H -subgroup of K. Since L is pronormal in G, L is also pronormal in K. It follows from Theorem 5 [4] that L is an H -subgroup of K. Hence, $L^g \cap N_K(L) \leq L$. Now, we show that $x \in L^g \cap N_K(L)$. In fact, since $x = a^g \in L^g, L \trianglelefteq H$ and L is pronormal in K, it follows that $N_K(H) \leq N_K(L)$.
Hence $x \in L^g \cap N_K(L) \leq L \leq H$. Thus, we have proved that H is an \mathcal{H} . Hence $x \in L^g \cap N_K(L) \leq L \leq H$. Thus, we have proved that H is an \mathcal{H} subgroup of G .

 $(ii) \Rightarrow (i)$. By Theorem 5.

- [1] M. S. Bah, Z.I. Borevich, "On Arangement of Subgroups" (Russian), "Kolsa i Lineinye Gruppy", Krasnodar (1988), 14-41.
- [2] R. Baer, *Situation der Untergruppen und Struktur der Gruppe,* S.-B. Heidelberg Akad. 2(1933), 12-17.
- [3] Bianchi, Mariagrazia, Gillio Berta Mauri, AnnaHerzog, Marcel; Verardi, Libero, *On finite solvable groups in which normality is a transitive relation,* J. Group Theory, 3 No. 2, 147-156 (2000).
- [4] A. Ballester-Bolinches and R. Esteban-Romero, *On Finite* T −Groups*,* J. Aust. Math. Soc. 75 (2003), 181-191.
- [5] P.V. Gavron and L.Yu. Kolotilina, *Subgroups in* T−groups*,* Zapiski Nauch. Seminar. LOMI im. V.A. Steklova AN SSSR, Vol. 103, pp. 62-65, 1980, English translation in J. Sov. Math. 24 (1984), 426-428.
- [6] Gavron, Masedonska-Nosalska O., *Certain properties of the lattice of subgroups of a given group,* Zesz. Nauk. Politech. Slask. 747, Mat. Fiz. 42, 5-13 (1984).
- [7] F.D. Giovani, G. Vincenzi, *Pronormality In Infinite Groups,* Mathematical Proceedings of the Royal Irish Academy, 100A(2)(2000), 198-203.
- [8] V.I.Mysovskikh, *Investigation of subgroup embeddings by the computer algebra package GAP,* in: Computer algebra in scientific computing-CASC'99 (Munich-Springger- Berlin (1999), 309-315.
- [9] D.J.S.Robinson, *Groups in which normality is a transitive relation,* Mathematical Proceedings of the Cambridge Philosophical Society, 60(1964), 21-38.
- [10] D. J. S. Robinson, "Finiteness conditions and generalized soluble groups", Springer, Berlin, 1972.
- [11] D.J.S.Robinson, *A note on finite groups in which normality is a transitive relation,* Proc. Amer. Math. Soc., 19 (1968), 933- 937.
- [12] W.R. Scott, "Group theory", Dover Publication, INC, 1987.