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Abstract

In this paper we consider a problem of signal processing where the
signal is expressed by a fractional Ornstein-Uhlenbeck process in general
form. An explicit form of the signal is derived from a fractional Langevin
equation. A method of L?—approximation is used to find the approxi-
mate estimate for the state of the fractional signal and the convergence
to the optimal estimate is established.

1 Introduction

It is known that the Ornstein-Uhlenbeck plays a crucial role in telecommuni-
cation as an only stationary Gaussian Markov signal with white noise. But a
Gaussian non-Markovian signal is also important in some context where the
signal leaves a long time influence upon its behavior. A good candidate for
expressing this signal property is a fractional Brownian noise. In this paper
we consider a problem of signal processing where the signal is a fractional
Ornstein-Uhlenbeck by introducing an approximation approach.
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2 Fractional Ornstein-Uhlenbeck signal processing

1.1 Fractional Brownian motion

A fractional Brownian motion of Mandelbrot form is a centerred Gaussian
process (W, ¢ > 0) with covariance function R(s,t) given by

1
R(s,t) = EW/W) = 5(82H+t2H+|t—8|2H), (1.1)
where H is a parameter called Hurst index, 0 < H < 1.
In the case where H = %, WH becomes a usual standard Brownian motion.
The process W/ can be decomposed as

WH = Cy(U, + BF), (1.2)

where U, is a stochastic process with absolutely continuous trajectory and Cg
is a constant depending only on H, Bff = fg(t — 8)“dWy with « = H — 1/2.
We know that Wi is a process of long memory with H # 1. In (1.2) this
property focuses at the second term B and by this reason, B is called
a fractional Brownian motion of Liouville form. In this paper we consider
fractional noise associated with Bf. The problem is how to get the optimal
state estimation for a fractional signal that is a general fractional Ornstein-
Uhlenbeck process (X¢,t > 0) satisfying the following equation

dX; = (a(t)X; +b(t))dt + odBE (1.3)
where H > 1/2, from an observation Y; given by
dY; = h(Xy)dt + dV;, (1.4)

where V; is a standard Brownian motion independent of B, h; = h(X;) is a
process such that

t
E/ hgds < 00, for every t > 0.
0

1.2 Approximation approach

The fractional Brownian motion B} is not a semimartingale, so a fractional
signal driven by BH as X; in (1.3) cannot be solved by the traditional Ito
calculus.

An L%-approximation approach has been introduced in [2] where a process Bfl o
is considered instead of Bf:

t
1
B/ :/ (t=s+e)%dW,, a=H— . (1.5)
0

A calculation says to us that Bfl ' is in fact a semimartingale.

dB/"* = apSdt + > dW, (1.6)
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where

t

1

<p§=/ (t—s+e) > taw,, a:H—a
0

And as shown in [2] we have the following fundamental result on L?—convergence
of semimartingales B/,
Result: BtH’E converges to By in L*(Q2) when € — 0 and we have

sup || B¢ — B2 < K(a)e'/?+e, (1.7)
0<t<T

where K(a) is a constant depending only on « = H — 1/2.
Moreover a new approach to stochastic integration and stochastic differen-
tial equations driven by B[ is given in [3] (refer also to [3]-[9]).

2 General fractional Ornstein-Uhlenbeck signal

2.1 Approximate signal equation

Consider again the equation
dX, = (a(t) X, + b(t))dt + cdB | H > 1/2, (2.1)

where 0 <t < T, coefficients a(t) and b(t) are deterministic continuous function
on [0,T].

It is a generalization of fractional stochastic Langevin equation studied in
[6] and [7], where our L?—approximation method has been applied to find its
solution. As shown in [10] the solution of (2.1) is a L!'—limit of that of an
approximate equation. Now we prove that it is also a L?—limit.

By replacing B} by BtH '“ we obtain the approximate equation for the signal
X; as follows

dXf = (a(t)X{ + b(t))dt + od B, (2.2)

where 0 <t <T, H>1/2.

2.2 Approximate equation

Equation (2.2) can be rewritten as follows
dX; = (a(t)X; + b(t) + avpy)dt + oe*dW;. (2.3)

A method of equation splitting introduced by us in [6, 7] can be applied to
(2.3). We can write

X§ = X{(t) + X5(),0< ¢ < T, (2.4)
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where
dX5(t) = a(t) X5 (t)dt + oe®dW, (2.5)

and
dXs5(t) = (a(t) X5(t) + b(t) + ay)dt. (2.6)
Equation (2.5) is a simple stochastic linear equation of Langevin type and its
solution is
t
X () = elo o (X1(0) + e / eI atwdugyy . 2.7)
0

And the equation (2.6) is an ordinary differential equation for every fixed w
and its solution is

t t
X5(t) = eJo alwdu [X5(0) + / b(s)e™ o Wdugg aa/ e Jo a(“)d“ds].
0 0
(2.8)

Now combining (2.4), (2.7) and (2.8) and noticing that apSds+e*dW, = dBH:
we can write the approximate signal X in the form

X = Xi(t) + X5(t)

t t
_ efgt a(u)du [XO + / b(S)e_ I a(u)duds + O'/ o I a(u)dudBSfI,E] , (29)
0 0

where X is assumed a random variable such that E|Xg|? < oco.

3 Convergence to the exact solution

We can see that the equation (2.1) satisfies all conditions of Theorem of exis-
tence and uniqueness for solution of a fractional stochastic differential equation
given in [3]. We will prove that the approximate signal X§ converges to the
fractional X; that is the exact solution of (2.1). Consider two equations

dX; = (a(t)X; +b(t))dt + od B,

dX¢ = (a(t)X{ + b(t))dt + odB<.

3.1 Theorem 3.1

X¢ converges to X; in L?(Q) uniformly with respect to t € [0, T].
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Proof. We have
t
X — X5 = a(t)/ (X5 — XO)ds + o(BT — B).
0

Then

t
X — X[l < MH/O (X = X5)ds|| + 0| B — B, (3.1)

where |.|| denote for L2-norm and |a(t)| < M for t € [0,7] , M > 0 due to the

fact that a(t) is a continuous function.
In account of (1.7) we can see from (3.1) that

t
|1X: — X5 < M/ |1 Xs — X&||ds + ch(oz)e%J”", 0<t<T. (3.2)
0

Applying the Gronwall’s lemma to (3.2) we get

1X: — X[ < ch(oz)e%J”"e_at (3.3)
and then )
sup || X; — X¢|| < oK(a)ez e T fora >0
<t<T
sup || X — X{|| < ch(oz)e%JrO‘ fora <0
0<t<T
So Xf — X; in L*(Q2) uniformly with respect to ¢ € [0, T]. O

3.2 Collorary 3.1

It follows from Theorem 3.1 and the formula (2.9) that the exact signal X; can
be explicitly expressed as

t t
X, = elo o (Xo —|—/ b(s)e™ Jo aWdugg a/ e~ Jo a(“)d“dBf). (3.4)
0 0

4 Best state estimate for signal X,

4.1 Approximation for best state estimate

Consider now an approximate model for state estimate of the signal X7 form
the observation Y;: Signal X;:

dX§ = (a(t)X{ + b(t))dt + odB<. (4.1)

Observation Y;:
dY; = h(X})dt + dV;. (4.2)
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The model (4.1) - (4.2) can be rewritten as follows

dX§ = (a(t)X{ + b(t) + apf)dt + ge*dW, (4.3)

t
Yo = / h(XE)ds + Vi, (4.4)
0

where W; and V; are two independent standard Brownian motion.
Let 7Y be the observation o—algebra, that is the algebra generated by all
random variables Yy for s < ¢:

FY =0(Ys,0< s <t).

Also, .7-'2/ “ is denoted for the approximate abservation o—algebra: .7-'2/ C =
o(YS,0 < s <t) The best state estimation for approximate signal X§ denoted
by X¢ based on observation information given by F :

Xi = B(X{|F). (4.5)

Denote by v; the innovation process that is a .7-'2/ E—martingale:
t —~
vy =Yf —/ héds, (4.6)
0

where h, = Im = BE(h(X,)|FY), 0 < s <tand by Hf the following expres-
sion
Hi = a(t)X; +b(t) + ay. (4.7)

Now we are in position to apply the FKK (Fujisaki-Kallianpur-Kunita) (see
[11]) equation to X§ and we have
Theorem 4.1 The best state estimate X§ is given by the following equation

t t
X :X5+/ X;H;ds+/ [Xchs — XShS]dvs, (4.8)
0 0
where the notation A stands for the best state estimate.

4.2 Best state estimation for the exact signal X,
Now we have to find .
Xy = E(X(|F)), (4.9)

where the signal X; is given by (3.4).
Consider the best approximate state X{ = E(X¢|F)").
Put e =1/n,n=1,2... and denote X" for X¢ with e = 1/n .
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Then X = X" = B(X™|F™) where FY" = F{™ is the o—algebra gener-
ated by (Xo, B™, V,, s < t) with
t
B™ = pftt/n = / (t—s—1/n)*dWL. (4.10)
0
By a change of variable we have

t—1/n
B™ = / (t —u)*dW, = B;_1,,, and B = B,_y . (4.11)
0

Therefore o—algebras .7-}(") = 0(Xo,Bs—1/n,Vs,s < t),n = 1,2,... form an

inscreasing filtration and ft(") ST
By applying the elementary inequality

1
la+b? < Slof? + bl

N~

we can see

E|[E(X™|FM) = B(X,|F)? < sE|IB(X™ — X F)2+

1
9
1 n
SEIBX|F™) = BOG|F) )P
1 . 1 "
< §E|Xt( ) X2+ §E|E(Xt|]-'t( N B(XFDR (4.12)

In the last side of (4.12) we see that when n — oo the first term tends to 0
by Theorem 3.1 for e = 1/n and the second term converges to 0 as well because
of a Levy theorem of convergence of conditional expectation.

Finally we can state

—

Theorem 4.2: X, can be considered as L? — lim of Xf") when n — oo

X, = L2 — lim E(X™)|F™. (4.13)

n—oo
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