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Abstract

In this paper we consider a problem of signal processing where the
signal is expressed by a fractional Ornstein-Uhlenbeck process in general
form. An explicit form of the signal is derived from a fractional Langevin
equation. A method of L2−approximation is used to find the approxi-
mate estimate for the state of the fractional signal and the convergence
to the optimal estimate is established.

1 Introduction

It is known that the Ornstein-Uhlenbeck plays a crucial role in telecommuni-
cation as an only stationary Gaussian Markov signal with white noise. But a
Gaussian non-Markovian signal is also important in some context where the
signal leaves a long time influence upon its behavior. A good candidate for
expressing this signal property is a fractional Brownian noise. In this paper
we consider a problem of signal processing where the signal is a fractional
Ornstein-Uhlenbeck by introducing an approximation approach.
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2 Fractional Ornstein-Uhlenbeck signal processing

1.1 Fractional Brownian motion

A fractional Brownian motion of Mandelbrot form is a centerred Gaussian
process (WH

t , t ≥ 0) with covariance function R(s, t) given by

R(s, t) = E(WH
s WH

t ) =
1
2
(s2H + t2H + |t − s|2H), (1.1)

where H is a parameter called Hurst index, 0 < H < 1.
In the case where H = 1

2 , WH
t becomes a usual standard Brownian motion.

The process WH
t can be decomposed as

WH
t = CH(Ut + BH

t ), (1.2)

where Ut is a stochastic process with absolutely continuous trajectory and CH

is a constant depending only on H , BH
t =

∫ t

0 (t − s)αdWs with α = H − 1/2.
We know that WH

t is a process of long memory with H �= 1
2 . In (1.2) this

property focuses at the second term BH
t and by this reason, BH

t is called
a fractional Brownian motion of Liouville form. In this paper we consider
fractional noise associated with BH

t . The problem is how to get the optimal
state estimation for a fractional signal that is a general fractional Ornstein-
Uhlenbeck process (Xt, t ≥ 0) satisfying the following equation

dXt = (a(t)Xt + b(t))dt + σdBH
t , (1.3)

where H > 1/2, from an observation Yt given by

dYt = h(Xt)dt + dVt, (1.4)

where Vt is a standard Brownian motion independent of BH
t , ht = h(Xt) is a

process such that

E

∫ t

0

h2
sds < ∞, for every t ≥ 0.

1.2 Approximation approach

The fractional Brownian motion BH
t is not a semimartingale, so a fractional

signal driven by BH
t as Xt in (1.3) cannot be solved by the traditional Ito

calculus.
An L2-approximation approach has been introduced in [2] where a process BH,ε

t

is considered instead of BH
t :

BH,ε
t =

∫ t

0

(t − s + ε)αdWs, α = H − 1
2
. (1.5)

A calculation says to us that BH,ε
t is in fact a semimartingale.

dBH,ε
t = αϕε

sdt + εαdWt, (1.6)
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where

ϕε
t =

∫ t

0

(t − s + ε)α−1dWs, α = H − 1
2
.

And as shown in [2] we have the following fundamental result on L2−convergence
of semimartingales BH,ε

t .
Result: BH,ε

t converges to Bt in L2(Ω) when ε → 0 and we have

sup
0≤t≤T

‖BH,ε
t − Bt‖L2 ≤ K(α)e1/2+α, (1.7)

where K(α) is a constant depending only on α = H − 1/2.
Moreover a new approach to stochastic integration and stochastic differen-

tial equations driven by BH
t is given in [3] (refer also to [3]-[9]).

2 General fractional Ornstein-Uhlenbeck signal

2.1 Approximate signal equation

Consider again the equation

dXt = (a(t)Xt + b(t))dt + σdBH
t , H > 1/2, (2.1)

where 0 ≤ t ≤ T, coefficients a(t) and b(t) are deterministic continuous function
on [0, T ].

It is a generalization of fractional stochastic Langevin equation studied in
[6] and [7], where our L2−approximation method has been applied to find its
solution. As shown in [10] the solution of (2.1) is a L1−limit of that of an
approximate equation. Now we prove that it is also a L2−limit.

By replacing BH
t by BH,ε

t we obtain the approximate equation for the signal
Xt as follows

dXε
t = (a(t)Xε

t + b(t))dt + σdBH,ε
t , (2.2)

where 0 ≤ t ≤ T, H > 1/2.

2.2 Approximate equation

Equation (2.2) can be rewritten as follows

dXε
t = (a(t)Xε

t + b(t) + αϕε
t)dt + σεαdWt. (2.3)

A method of equation splitting introduced by us in [6, 7] can be applied to
(2.3). We can write

Xε
t = Xε

1(t) + Xε
2(t), 0 ≤ t ≤ T, (2.4)
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where
dXε

1(t) = a(t)Xε
1(t)dt + σεαdWt (2.5)

and
dXε

2(t) = (a(t)Xε
2(t) + b(t) + αϕε

t)dt. (2.6)

Equation (2.5) is a simple stochastic linear equation of Langevin type and its
solution is

Xε
1(t) = e

∫ t
0 a(u)du(Xε

1(0) + σεα

∫ t

0

e−
∫ s
0 a(u)dudWs). (2.7)

And the equation (2.6) is an ordinary differential equation for every fixed ω
and its solution is

Xε
2(t) = e

∫ t
0 a(u)du

[
Xε

2(0) +
∫ t

0

b(s)e−
∫ s
0 a(u)duds + σα

∫ t

0

ϕε
se

− ∫ s
0 a(u)duds

]
.

(2.8)

Now combining (2.4), (2.7) and (2.8) and noticing that αϕε
sds+εαdWs = dBH,ε

s

we can write the approximate signal Xε
t in the form

Xε
t = Xε

1(t) + Xε
2(t)

= e
∫ t
0 a(u)du

[
X0 +

∫ t

0

b(s)e−
∫ s
0 a(u)duds + σ

∫ t

0

e−
∫ s
0 a(u)dudBH,ε

s

]
, (2.9)

where X0 is assumed a random variable such that E|X0|2 < ∞.

3 Convergence to the exact solution

We can see that the equation (2.1) satisfies all conditions of Theorem of exis-
tence and uniqueness for solution of a fractional stochastic differential equation
given in [3]. We will prove that the approximate signal Xε

t converges to the
fractional Xt that is the exact solution of (2.1). Consider two equations

dXt = (a(t)Xt + b(t))dt + σdBH
t ,

dXε
t = (a(t)Xε

t + b(t))dt + σdBH,ε
t .

3.1 Theorem 3.1

Xε
t converges to Xt in L2(Ω) uniformly with respect to t ∈ [0, T ].
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Proof. We have

Xt − Xε
t = a(t)

∫ t

0

(Xs − Xε
s)ds + σ(BH

t − BH,ε
t ).

Then

‖Xt − Xε
t ‖ ≤ M‖

∫ t

0

(Xs − Xε
s)ds‖ + σ‖Bt − BH,ε

t ‖, (3.1)

where ‖.‖ denote for L2-norm and |a(t)| ≤ M for t ∈ [0, T ] , M > 0 due to the
fact that a(t) is a continuous function.
In account of (1.7) we can see from (3.1) that

‖Xt − Xε
t ‖ ≤ M

∫ t

0

‖Xs − Xε
s‖ds + σK(α)ε

1
2+α, 0 ≤ t ≤ T. (3.2)

Applying the Gronwall’s lemma to (3.2) we get

‖Xt − Xε
t ‖ ≤ σK(α)ε

1
2+αe−at (3.3)

and then
sup

0≤t≤T
‖Xt − Xε

t ‖ ≤ σK(α)ε
1
2+αe−aT for a > 0

sup
0≤t≤T

‖Xt − Xε
t ‖ ≤ σK(α)ε

1
2+α for a < 0

So Xε
t −→ Xt in L2(Ω) uniformly with respect to t ∈ [0, T ]. �

3.2 Collorary 3.1

It follows from Theorem 3.1 and the formula (2.9) that the exact signal Xt can
be explicitly expressed as

Xt = e
∫ t
0 a(u)du

(
X0 +

∫ t

0

b(s)e−
∫ s
0 a(u)duds + σ

∫ t

0

e−
∫ s
0 a(u)dudBH

s

)
. (3.4)

4 Best state estimate for signal Xt

4.1 Approximation for best state estimate

Consider now an approximate model for state estimate of the signal Xε
t form

the observation Yt: Signal Xε
t :

dXε
t = (a(t)Xε

t + b(t))dt + σdBH,ε
t . (4.1)

Observation Yt:
dYt = h(Xε

t )dt + dVt. (4.2)
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The model (4.1) - (4.2) can be rewritten as follows

dXε
t =

(
a(t)Xε

t + b(t) + αϕε
t

)
dt + σεαdWt, (4.3)

Y ε
t =

∫ t

0

h(Xε
s)ds + Vt. (4.4)

where Wt and Vt are two independent standard Brownian motion.
Let FY

t be the observation σ−algebra, that is the algebra generated by all
random variables Ys for s ≤ t:

FY
t = σ(Ys, 0 ≤ s ≤ t).

Also, FY ε

t is denoted for the approximate abservation σ−algebra: FY ε

t =
σ(Y ε

s , 0 ≤ s ≤ t) The best state estimation for approximate signal Xε
t denoted

by X̂ε
t based on observation information given by FY

t :

X̂ε
t = E

(
Xε

t |FY ε

t

)
. (4.5)

Denote by νt the innovation process that is a FY ε

t -martingale:

νt = Y ε
t −

∫ t

0

ĥε
sds, (4.6)

where ĥs = ̂h(Xs) = E(h(Xs)|FY
s ), 0 ≤ s ≤ t and by Hε

t the following expres-
sion

Hε
t = a(t)Xε

t + b(t) + αϕε
t. (4.7)

Now we are in position to apply the FKK (Fujisaki-Kallianpur-Kunita) (see
[11]) equation to X̂ε

t and we have
Theorem 4.1 The best state estimate X̂ε

t is given by the following equation

X̂ε
t = X̂ε

0 +
∫ t

0

̂Xε
sHε

sds +
∫ t

0

[
̂Xε

shs − X̂ε
s ĥε

s

]
dνs, (4.8)

where the notation ∧ stands for the best state estimate.

4.2 Best state estimation for the exact signal Xt

Now we have to find
X̂t = E(Xt|FY

t ), (4.9)

where the signal Xt is given by (3.4).
Consider the best approximate state X̂ε

t = E(Xε
t |FY ε

t ).
Put ε = 1/n, n = 1, 2 . . . and denote X(n) for Xε

t with ε = 1/n .
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Then X̂ε
t = ̂

X
(n)
t = E(X(n)

t |F (n)
t ) where FY ε

t = F (n)
t is the σ−algebra gener-

ated by (X0, B
(n)
s , Vs, s ≤ t) with

B
(n)
t = B

H,1/n
t =

∫ t

0

(t − s − 1/n)αdWs. (4.10)

By a change of variable we have

B
(n)
t =

∫ t−1/n

0

(t − u)αdWu = Bt−1/n and B(n)
s = Bs−1/n. (4.11)

Therefore σ−algebras F (n)
t = σ(X0, Bs−1/n, Vs, s ≤ t), n = 1, 2, . . . form an

inscreasing filtration and F (n)
t ↗ FY

t .
By applying the elementary inequality

|a + b|2 ≤ 1
2
|a|2 +

1
2
|b|2

we can see

E|E(X(n)|F (n)
t ) − E(Xt|FY

t )|2 ≤ 1
2
E|E(X(n)

t − Xt|F (n)
t )|2+

1
2
E|E(Xt|F (n)

t ) − E(Xt|FY
t )|2

≤ 1
2
E|X(n)

t − Xt|2 +
1
2
E|E(Xt|F (n)

t ) − E(Xt|FY
t )|2. (4.12)

In the last side of (4.12) we see that when n → ∞ the first term tends to 0
by Theorem 3.1 for ε = 1/n and the second term converges to 0 as well because
of a Levy theorem of convergence of conditional expectation.
Finally we can state

Theorem 4.2: X̂t can be considered as L2 − lim of ̂

X
(n)
t when n → ∞

X̂t = L2 − lim
n→∞E(X(n)

t )|F (n)
t . (4.13)
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