FRACTIONAL ORNSTEIN-UHLENBECK SIGNAL PROCESSING

Tran Hung Thao¹**, Tran Manh Tuong**²**, Tran Phuoc Loc**³

¹*Institute of Mathematics Vietnam Academy of Science and Technology e-mail: ththao@math.ac.vn*

²*University of Finance and Marketing Ho Chi Minh City, Vietnam e-mail: tmtuong@gmail.com*

³*Can Tho University, Vietnam e-mail: tploc@ctu.edu.vn*

Abstract

In this paper we consider a problem of signal processing where the signal is expressed by a fractional Ornstein-Uhlenbeck process in general form. An explicit form of the signal is derived from a fractional Langevin equation. A method of L^2 *-approximation* is used to find the approximate estimate for the state of the fractional signal and the convergence to the optimal estimate is established.

1 Introduction

It is known that the Ornstein-Uhlenbeck plays a crucial role in telecommunication as an only stationary Gaussian Markov signal with white noise. But a Gaussian non-Markovian signal is also important in some context where the signal leaves a long time influence upon its behavior. A good candidate for expressing this signal property is a fractional Brownian noise. In this paper we consider a problem of signal processing where the signal is a fractional Ornstein-Uhlenbeck by introducing an approximation approach.

Key words: Fractional Ornstein-Uhlenbeck signal, *^L*2*−*approximation approach, fractional Brownian motion. 2010 MS: 60H, 93E05. 2010 AMS Mathematics classification: 60H, 93E05.

1.1 Fractional Brownian motion

A fractional Brownian motion of Mandelbrot form is a centerred Gaussian process $(W_t^H, t \geq 0)$ with covariance function $R(s, t)$ given by

$$
R(s,t) = E(W_s^H W_t^H) = \frac{1}{2}(s^{2H} + t^{2H} + |t - s|^{2H}),
$$
\n(1.1)

where H is a parameter called Hurst index, $0 < H < 1$. In the case where $H = \frac{1}{2}$, W_t^H becomes a usual standard Brownian motion. The process W_t^H can be decomposed as

$$
W_t^H = C_H (U_t + B_t^H), \t\t(1.2)
$$

where U_t is a stochastic process with absolutely continuous trajectory and C_H is a constant depending only on H, $B_t^H = \int_0^t (t-s)^\alpha dW_s$ with $\alpha = H - 1/2$. We know that W_t^H is a process of long memory with $H \neq \frac{1}{2}$. In (1.2) this property focuses at the second term B_t^H and by this reason, B_t^H is called a fractional Brownian motion of Liouville form. In this paper we consider fractional noise associated with B_t^H . The problem is how to get the optimal state estimation for a fractional signal that is a general fractional Ornstein-Uhlenbeck process $(X_t, t \geq 0)$ satisfying the following equation

$$
dX_t = (a(t)X_t + b(t))dt + \sigma dB_t^H,
$$
\n(1.3)

where $H > 1/2$, from an observation Y_t given by

$$
dY_t = h(X_t)dt + dV_t, \t\t(1.4)
$$

where V_t is a standard Brownian motion independent of B_t^H , $h_t = h(X_t)$ is a process such that

$$
E\int_0^t h_s^2ds<\infty, \text{ for every } t\geq 0.
$$

1.2 Approximation approach

The fractional Brownian motion B_t^H is not a semimartingale, so a fractional signal driven by B_t^H as X_t in (1.3) cannot be solved by the traditional Ito calculus.

An L^2 -approximation approach has been introduced in [2] where a process $B_t^{H,\epsilon}$ is considered instead of B_t^H :

$$
B_t^{H,\epsilon} = \int_0^t (t - s + \epsilon)^\alpha dW_s, \ \alpha = H - \frac{1}{2}.
$$
 (1.5)

A calculation says to us that $B_t^{H,\epsilon}$ is in fact a semimartingale.

$$
dB_t^{H,\epsilon} = \alpha \varphi_s^{\epsilon} dt + \epsilon^{\alpha} dW_t, \qquad (1.6)
$$

T. H. THAO, T. M. TUONG AND T. P. LOC 3

where

$$
\varphi_t^{\epsilon} = \int_0^t (t - s + \epsilon)^{\alpha - 1} dW_s, \ \alpha = H - \frac{1}{2}.
$$

And as shown in [2] we have the following fundamental result on L^2 −convergence of semimartingales $B_t^{H,\epsilon}$.

Result: $B_t^{H,\epsilon}$ *converges to* B_t *in* $L^2(\Omega)$ *when* $\epsilon \to 0$ *and we have*

$$
\sup_{0 \le t \le T} \|B_t^{H,\epsilon} - B_t\|_{L^2} \le K(\alpha) e^{1/2 + \alpha},\tag{1.7}
$$

where $K(\alpha)$ *is a constant depending only on* $\alpha = H - 1/2$ *.*

Moreover a new approach to stochastic integration and stochastic differential equations driven by B_t^H is given in [3] (refer also to [3]-[9]).

2 General fractional Ornstein-Uhlenbeck signal

2.1 Approximate signal equation

Consider again the equation

$$
dX_t = (a(t)X_t + b(t))dt + \sigma dB_t^H, H > 1/2,
$$
\n(2.1)

where $0 \le t \le T$, coefficients $a(t)$ and $b(t)$ are deterministic continuous function on $[0, T]$.

It is a generalization of fractional stochastic Langevin equation studied in [6] and [7], where our L^2 -approximation method has been applied to find its solution. As shown in [10] the solution of (2.1) is a L^1 -limit of that of an approximate equation. Now we prove that it is also a L^2 -limit.

By replacing B_t^H by $B_t^{H,\epsilon}$ we obtain the approximate equation for the signal X_t as follows

$$
dX_t^{\epsilon} = (a(t)X_t^{\epsilon} + b(t))dt + \sigma dB_t^{H,\epsilon}, \qquad (2.2)
$$

where $0 \le t \le T$, $H > 1/2$.

2.2 Approximate equation

Equation (2.2) can be rewritten as follows

$$
dX_t^{\epsilon} = (a(t)X_t^{\epsilon} + b(t) + \alpha \varphi_t^{\epsilon})dt + \sigma \epsilon^{\alpha} dW_t.
$$
 (2.3)

A method of equation splitting introduced by us in [6, 7] can be applied to (2.3). We can write

$$
X_t^{\epsilon} = X_1^{\epsilon}(t) + X_2^{\epsilon}(t), 0 \le t \le T,
$$
\n(2.4)

where

$$
dX_1^{\epsilon}(t) = a(t)X_1^{\epsilon}(t)dt + \sigma \epsilon^{\alpha} dW_t
$$
\n(2.5)

and

$$
dX_2^{\epsilon}(t) = (a(t)X_2^{\epsilon}(t) + b(t) + \alpha \varphi_t^{\epsilon})dt.
$$
\n(2.6)

Equation (2.5) is a simple stochastic linear equation of Langevin type and its solution is

$$
X_1^{\epsilon}(t) = e^{\int_0^t a(u)du} (X_1^{\epsilon}(0) + \sigma \epsilon^{\alpha} \int_0^t e^{-\int_0^s a(u)du} dW_s).
$$
 (2.7)

And the equation (2.6) is an ordinary differential equation for every fixed ω and its solution is

$$
X_2^{\epsilon}(t) = e^{\int_0^t a(u) du} \left[X_2^{\epsilon}(0) + \int_0^t b(s) e^{-\int_0^s a(u) du} ds + \sigma \alpha \int_0^t \varphi_s^{\epsilon} e^{-\int_0^s a(u) du} ds \right].
$$
\n(2.8)

Now combining (2.4), (2.7) and (2.8) and noticing that $\alpha \varphi_s^{\epsilon} ds + \epsilon^{\alpha} dW_s = dB_s^{H,\epsilon}$ we can write the approximate signal X_t^{ϵ} in the form

$$
X_t^{\epsilon} = X_1^{\epsilon}(t) + X_2^{\epsilon}(t)
$$

= $e^{\int_0^t a(u)du} [X_0 + \int_0^t b(s)e^{-\int_0^s a(u)du} ds + \sigma \int_0^t e^{-\int_0^s a(u)du} dB_s^{H,\epsilon}],$ (2.9)

where X_0 is assumed a random variable such that $E|X_0|^2 < \infty$.

3 Convergence to the exact solution

We can see that the equation (2.1) satisfies all conditions of Theorem of existence and uniqueness for solution of a fractional stochastic differential equation given in [3]. We will prove that the approximate signal X_t^{ϵ} converges to the fractional X_t that is the exact solution of (2.1). Consider two equations

$$
dX_t = (a(t)X_t + b(t))dt + \sigma dB_t^H,
$$

$$
dX_t^{\epsilon} = (a(t)X_t^{\epsilon} + b(t))dt + \sigma dB_t^{H,\epsilon}.
$$

3.1 Theorem 3.1

 X_t^{ϵ} converges to X_t in $L^2(\Omega)$ uniformly with respect to $t \in [0, T]$.

T. H. THAO, T. M. TUONG AND T. P. LOC 5

Proof. We have

$$
X_t - X_t^{\epsilon} = a(t) \int_0^t (X_s - X_s^{\epsilon}) ds + \sigma (B_t^H - B_t^{H,\epsilon}).
$$

Then

$$
||X_t - X_t^{\epsilon}|| \le M||\int_0^t (X_s - X_s^{\epsilon})ds|| + \sigma||B_t - B_t^{H,\epsilon}||,
$$
\n(3.1)

where $\|.\|$ denote for L^2 -norm and $|a(t)| \leq M$ for $t \in [0, T]$, $M > 0$ due to the fact that $a(t)$ is a continuous function.

In account of (1.7) we can see from (3.1) that

$$
||X_t - X_t^{\epsilon}|| \le M \int_0^t ||X_s - X_s^{\epsilon}|| ds + \sigma K(\alpha) \epsilon^{\frac{1}{2} + \alpha}, 0 \le t \le T. \tag{3.2}
$$

Applying the Gronwall's lemma to (3.2) we get

$$
||X_t - X_t^{\epsilon}|| \le \sigma K(\alpha) \epsilon^{\frac{1}{2} + \alpha} e^{-at}
$$
\n(3.3)

and then

$$
\sup_{0 \le t \le T} \|X_t - X_t^{\epsilon}\| \le \sigma K(\alpha) \epsilon^{\frac{1}{2} + \alpha} e^{-aT} \text{ for } a > 0
$$

$$
\sup_{0 \le t \le T} \|X_t - X_t^{\epsilon}\| \le \sigma K(\alpha) \epsilon^{\frac{1}{2} + \alpha} \text{ for } a < 0
$$

So $X_t^{\epsilon} \longrightarrow X_t$ in $L^2(\Omega)$ uniformly with respect to $t \in [0, T]$.

 \Box

3.2 Collorary 3.1

It follows from Theorem 3.1 and the formula (2.9) that the exact signal X_t can be explicitly expressed as

$$
X_t = e^{\int_0^t a(u) du} \left(X_0 + \int_0^t b(s) e^{-\int_0^s a(u) du} ds + \sigma \int_0^t e^{-\int_0^s a(u) du} dB_s^H \right). \tag{3.4}
$$

4 Best state estimate for signal X_t

4.1 Approximation for best state estimate

Consider now an approximate model for state estimate of the signal X_t^{ϵ} form the observation Y_t : Signal X_t^{ϵ} :

$$
dX_t^{\epsilon} = (a(t)X_t^{\epsilon} + b(t))dt + \sigma dB_t^{H,\epsilon}.
$$
\n(4.1)

Observation Y_t :

$$
dY_t = h(X_t^{\epsilon})dt + dV_t.
$$
\n(4.2)

The model (4.1) - (4.2) can be rewritten as follows

$$
dX_t^{\epsilon} = (a(t)X_t^{\epsilon} + b(t) + \alpha \varphi_t^{\epsilon})dt + \sigma \epsilon^{\alpha} dW_t, \qquad (4.3)
$$

$$
Y_t^{\epsilon} = \int_0^t h(X_s^{\epsilon})ds + V_t.
$$
\n(4.4)

where W_t and V_t are two independent standard Brownian motion. Let \mathcal{F}^Y_t be the observation σ -algebra, that is the algebra generated by all random variables Y_s for $s \leq t$:

$$
\mathcal{F}_t^Y = \sigma(Y_s, 0 \le s \le t).
$$

Also, $\mathcal{F}_t^{Y^{\epsilon}}$ is denoted for the approximate abservation σ -algebra: $\mathcal{F}_t^{Y^{\epsilon}}$ = $\sigma(Y_{s}^{\epsilon}, 0 \leq s \leq t)$ The best state estimation for approximate signal X_{t}^{ϵ} denoted by $\widehat{X_t^{\epsilon}}$ based on observation information given by \mathcal{F}_t^Y :

$$
\widehat{X_t^{\epsilon}} = E\big(X_t^{\epsilon}|\mathcal{F}_t^{Y^{\epsilon}}\big). \tag{4.5}
$$

Denote by ν_t the innovation process that is a $\mathcal{F}_t^{Y^{\epsilon}}$ -martingale:

$$
\nu_t = Y_t^\epsilon - \int_0^t \widehat{h_s^\epsilon} ds,\tag{4.6}
$$

where $\widehat{h_s} = \widehat{h(X_s)} = E(h(X_s)|\mathcal{F}_s^Y), 0 \le s \le t$ and by H_t^{ϵ} the following expression

$$
H_t^{\epsilon} = a(t)X_t^{\epsilon} + b(t) + \alpha \varphi_t^{\epsilon}.
$$
\n(4.7)

Now we are in position to apply the FKK (Fujisaki-Kallianpur-Kunita) (see [11]) equation to \widehat{X}_t^{ϵ} and we have

Theorem 4.1 The best state estimate
$$
\widehat{X}_t^{\epsilon}
$$
 is given by the following equation
\n
$$
\widehat{X}_t^{\epsilon} = \widehat{X}_0^{\epsilon} + \int_0^t \widehat{X}_s^{\epsilon} \widehat{H}_s^{\epsilon} ds + \int_0^t \widehat{[X_s^{\epsilon} h_s - \widehat{X}_s^{\epsilon} h_s^{\epsilon}]} d\nu_s,
$$
\n(4.8)

where the notation ∧ *stands for the best state estimate.*

4.2 Best state estimation for the exact signal *X^t*

Now we have to find

$$
\widehat{X_t} = E(X_t | \mathcal{F}_t^Y),\tag{4.9}
$$

where the signal X_t is given by (3.4). Consider the best approximate state $\widehat{X_t^{\epsilon}} = E(X_t^{\epsilon} | \mathcal{F}_t^{Y^{\epsilon}}).$ Put $\epsilon = 1/n, n = 1, 2...$ and denote $X^{(n)}$ for X_t^{ϵ} with $\epsilon = 1/n$. T. H. Thao, T. M. Tuong and T. P. Loc 7 \mathcal{L}_{max}

Then $\widehat{X_t^{\epsilon}} = X_t^{(n)} = E(X_t^{(n)} | \mathcal{F}_t^{(n)})$ where $\mathcal{F}_t^{Y^{\epsilon}} = \mathcal{F}_t^{(n)}$ is the σ -algebra generated by $(X_0, B_s^{(n)}, V_s, s \le t)$ with

$$
B_t^{(n)} = B_t^{H,1/n} = \int_0^t (t - s - 1/n)^{\alpha} dW_s.
$$
 (4.10)

By a change of variable we have

$$
B_t^{(n)} = \int_0^{t-1/n} (t-u)^{\alpha} dW_u = B_{t-1/n} \text{ and } B_s^{(n)} = B_{s-1/n}.
$$
 (4.11)

Therefore σ -algebras $\mathcal{F}_t^{(n)} = \sigma(X_0, B_{s-1/n}, V_s, s \le t), n = 1, 2, \dots$ form an inscreasing filtration and $\mathcal{F}_t^{(n)} \nearrow \mathcal{F}_t^Y$. By applying the elementary inequality

$$
|a+b|^2 \le \frac{1}{2}|a|^2 + \frac{1}{2}|b|^2
$$

we can see

$$
E|E(X^{(n)}|\mathcal{F}_t^{(n)}) - E(X_t|\mathcal{F}_t^Y)|^2 \le \frac{1}{2}E|E(X_t^{(n)} - X_t|\mathcal{F}_t^{(n)})|^2 +
$$

$$
\frac{1}{2}E|E(X_t|\mathcal{F}_t^{(n)}) - E(X_t|\mathcal{F}_t^Y)|^2
$$

$$
\le \frac{1}{2}E|X_t^{(n)} - X_t|^2 + \frac{1}{2}E|E(X_t|\mathcal{F}_t^{(n)}) - E(X_t|\mathcal{F}_t^Y)|^2.
$$
 (4.12)

In the last side of (4.12) we see that when $n \to \infty$ the first term tends to 0 by Theorem 3.1 for $\epsilon = 1/n$ and the second term converges to 0 as well because of a Levy theorem of convergence of conditional expectation. Finally we can state

Theorem 4.2: \widehat{X}_t can be considered as L^2 – lim of $X_t^{(n)}$ when $n \to \infty$

$$
\widehat{X_t} = L^2 - \lim_{n \to \infty} E(X_t^{(n)}) |\mathcal{F}_t^{(n)}.
$$
\n(4.13)

Acknowledgements This research is funded by Vietnam National Foundation for Science and Technology Development NAFOSTED under Grant No 101.02- 2011.12.

References

[1] Loeve M., *Probability Theory*, Springer, D.Van Nostrand company, 1963.

[2] Thao T. H., An approximate approach to fractional analysis for finance, *Nonlinear Analysis: Real W. Appl.***7**(1), 124-132, (2006), Elsevier, USA.

- [3] Thao T. H., A Practical Approach to Fractional Stochastic Dynamics, *J. Comput., Nonlinear Dyn.* (American Association of Mechanical Engineers-ASME), **8**, 031015,1-5, (2013).
- [4] Thao T. H., Christine T. A. ,*E*´volution des cours gouvern´ee par un processus de type ARIMA fractionaire, *Studia Babes-Bolyai, Mathematica* **38**(2), 107-115, (2003).
- [5] Thao T.H., P. Sattayatham, T. Plienpanich, On Fractional Stochastic Filtering, *Studia Babes Bolyai Mathematica,* **53** (4), 97-108, (2008).
- [6] Thao T. H., Nguyen T. T., Fractal Langevin Equation, *Vietnam Journal of Mathematics* **89-96, 30**(1), (2003).
- [7] Thao T. H., On Some Classes of Fractional Stochastic Dynamical Systems, *East-West J. of Math.* **15**(1), 54-69, (2013).
- [8] Thao T. H., A Note on Fractional Kalman-Bucy Filtering, *East-West J. of Math.* **15**(2), 125-134, (2013).
- [9] Thao T. H. and Phuong Thao H.T., A problem of fractional signal processing, *East-West J. of Math.* **16**(2), 192-200, (2014).
- [10] Dung N. T. and Thao T. H., An approximate approach to fractional integration and its applications, *Brazil J. of Prob. and Stat.,* **24**(1), 57-67, (2010).
- [11] Fujisaki M., Kalliapur G. and Kunita H., Stochastic diferential equations for non-linear filtering problem, *Osaka Journal of Mathematics,* **9**, 1-40, (1972).