MINIMAL REDUCING SUBSPACES OF THE UNILATERAL SHIFT

Munmun Hazarika and **Pearl S. Gogoi**

Department of Mathematical Sciences, Tezpur University, India email: munmun@tezu.ernet.in; pearl@tezu.ernet.in

Abstract

We introduce a family $\mathcal T$ consisting of invertible matrices with exactly one non zero entry in each row and each column. The elements of *T* are mutually non commuting, and need not be normal or self adjoint. We consider the operator weighted sequence space $l_B^2(K)$ with a uniformly bounded weight sequence $B = {B_n}_{n=0}^{\infty}$ in *T*. For the unilateral shift *S* on $l_B^2(K)$, we obtain a complete description of the reducing and minimal reducing subspaces of *S*.

1 Introduction

Let K be a separable complex Hilbert space, and $l^2(K) = \bigoplus_{0}^{\infty} K$ be the orthogonal sum of \aleph_o copies of the Hilbert space K with a scalar product defined by

$$
\langle f, g \rangle = \sum_{n=0}^{\infty} \langle f_n, g_n \rangle, \ f = (f_0, f_1, \dots) \in l^2(K), g = (g_0, g_1, \dots) \in l^2(K).
$$

Let ${e_i}_{i=0}^{\infty}$ be an orthonormal basis for K. Also for $i, j \in \{0, 1, 2, ...\}$, let $g_{i,j} := (0, ..., e_i, 0, ...)$ where e_i occurs at the jth position. If $\mathbb{N}_0 := \{0, 1, 2, ...\}$ then $\{g_{i,j}\}_{i,j\in\mathbb{N}_0}$ is an orthonormal basis for the Hilbert space $l^2(K)$.

Let $\mathcal{B}(K)$ denote the space of all bounded linear operators on K with norm defined as $||T|| = \sup_{||x||=1} ||Tx||$ for $T \in \mathcal{B}(K)$. Let us now consider the

Keywords: unilateral shift, operator weighted sequence space, reducing subspace (2010) AMS Classification: Primary 47B37; Secondary 47A15.

operator weighted sequence space $l_B^2(K)$. To define $l_B^2(K)$, let $B = \{B_n\}_{n=1}^{\infty}$
be a sequence of invertible bounded linear operators on K and $l^2(K)$. be a sequence of invertible bounded linear operators on K, and $l_B^2(K) :=$
 $\iint_{K} f(x) dx = K$ and $\sum_{k=0}^{\infty} ||R_k f||^2 \le \infty$. For $f = (f_k)$ and $g = (g_k)$ in $\{(f_0, f_1, ...) : f_i \in K \text{ and } \sum_{i=0}^{\infty} ||B_i f_i||^2 < \infty \}.$ For $f = (f_i)$ and $g = (g_i)$ in $I^2(K)$ we have $l_B^2(K)$, we have

$$
\langle f, g \rangle_B := \sum_{i=0}^{\infty} \langle B_i f_i, B_i g_i \rangle
$$
 and $||f||_B^2 = \sum_{i=0}^{\infty} ||B_i f_i||^2$.

As $||g_{i,j}||_B = ||B_je_i||$, so if $f_{i,j} := \frac{g_{i,j}}{||B_je_i||}$, then $\{f_{i,j}\}_{i,j\in\mathbb{N}_0}$ is an orthonormal
begin for the Hilbert grave $L^2(V)$, if $f_{i,j}$ in $K = 1$, then each B is a new grave basis for the Hilbert space $l_B^2(K)$. If $dim K = 1$, then each B_n is a non zero
scalar β and $l^2(K)$ is the scalar weighted sequence space l^2 defined in [4] scalar β_n , and $l_B^2(K)$ is the scalar weighted sequence space l_β^2 defined in [4].

Depending on the weights ${B_n}$ we can have different types of operator weighted sequence spaces $l_B^2(K)$. In this paper we consider the weights B_n to belong to a special subset \mathcal{T} of $\mathcal{B}(K)$ defined as follows: a special subset $\mathcal T$ of $\mathcal B(K)$ defined as follows:

 $\mathcal{T} := \{T \in \mathcal{B}(K) \mid T \text{ is invertible in } \mathcal{B}(K) \text{ and the matrix of } T \text{ with respect to } \mathcal{B}(\mathcal{X})\}$ ${e_n}$ [∞] has exactly one non zero entry in each row and each column}
W We observe the following:

(i) If $T_1, T_2 \in \mathcal{T}$, then $T_1 T_2 \in \mathcal{T}$. However, T_1 and T_2 need not commute and hence elements of $\mathcal T$ are not simultaneously diagonalizable with respect to ${e_n\}_{0}^{\infty}$.
(::) If σ

(ii) If $T \in \mathcal{T}$ then its Hilbert adjoint T^* and inverse T^{-1} are also in \mathcal{T} . (iii) Elements of $\mathcal T$ may not be self adjoint or normal.

The unilateral shift S on $l_F²$ The unilateral shift S on $l_B^2(K)$ is defined as $S(f_0, f_1,...) = (0, f_0, f_1,...)$.
Clearly, S is bounded if and only if $\sup_{i,j} \frac{\|B_{j+1}e_i\|}{\|B_je_i\|} < \infty$. Here we will determine the minimal reducing subspaces of S on $l_B^2(K)$ $B = \{B_n\}$ is in T. We recall that for a bounded linear operator T on a Hilbert space H, a subspace M of H is said to be invariant for T if $T(M) \subseteq M$. If the subspace M is invariant for both T and T^* , then M is said to be reducing for T. A reducing subspace M is said to be minimal reducing if the only reducing subspaces contained in M are $\{0\}$ and M itself.

2 An equivalence relation

We know that the elements of $\mathcal T$ have a specific type of matrix representation with respect to $\{e_i\}_{i\in\mathbb{N}_0}$. Let $T\in\mathcal{T}$ and for $j\in\mathbb{N}_0$ let γ_j denote the non zero entry occurring in the jth column of the matrix of T with respect to $\{e_i\}_{i=0}^{\infty}$.
Then there exists a unique bijective man $\psi : \mathbb{N}_{\Omega} \to \mathbb{N}_{\Omega}$ such that α_i occurs at Then there exists a unique bijective map $\psi : \mathbb{N}_0 \to \mathbb{N}_0$ such that γ_j occurs at the $\psi(j)^{th}$ row. Thus if $[a_{i,j}]$ $(i, j \in \mathbb{N}_0)$ denotes the matrix of T with respect

M. Hazarika and Pearl S. Gogoi 45

to $\{e_i\}_{i=0}^{\infty}$, then

$$
a_{i,j} := \begin{cases} \gamma_j, & \text{if } i = \psi(j); \\ 0, & \text{otherwise.} \end{cases}
$$

Thus for each $j \in \mathbb{N}_0$, $Te_j = \gamma_i e_{\psi(j)}$. Also $||T|| = \sup_i |\gamma_i|$.

As we are considering the operator weighted sequence space $l_B^2(K)$, where the uniformly bounded weight sequence $B - I B$, is in \mathcal{T} , so for each $n \in \mathbb{N}$, there uniformly bounded weight sequence $B = \{B_n\}$ is in T, so for each $n \in \mathbb{N}_0$ there exists a unique bijective map ψ_n on \mathbb{N}_0 such that $B_n e_j = \gamma_j^{(n)} e_{\psi_n(j)}$, where $\gamma_j^{(n)}$ denotes the unique non zero entry occurring in the j^{th} column of the matrix of B_n .

Definition 2.1. Let $B = {B_n}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in T, and for each $n \in \mathbb{N}_0$ let $\gamma_j^{(n)}$ denote the unique non zero entry occurring in the jth column of the matrix of B_n . The weight sequence ${B_n}$ is said to be of $type I$ if for each pair of distinct non negative integers m and n there exist some positive integer k such that $\frac{\gamma_m^{(k)}}{\gamma_m^{(k)}}$ $\frac{\gamma_m^{(k)}}{\gamma_m^{(0)}} \neq \frac{\gamma_n^{(k)}}{\gamma_n^{(0)}}$

there exist $\frac{\gamma_n^{\gamma}}{\gamma_n^{(0)}}$. Otherwise, it is said to be of *type* II. Thus ${B_n}$ is of *type* II if there exist distinct non negative integers m and n such that $\frac{\gamma_m^{(k)}}{\gamma_m^{(0)}} = \frac{\gamma_n^{(k)}}{\gamma_n^{(0)}}$ for every positive integer k.

Definition 2.2. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in T, and for each $n \in \mathbb{N}_0$ let $\gamma_j^{(n)}$ denote the unique non zero entry occurring in the j^{th} column of the matrix of B_n . Two non negative integers m and n are said to be B-related (denoted by $m \sim^B n$) if for every positive integer k, we have $\frac{\gamma_m^{(k)}}{\gamma_m^{(0)}} = \frac{\gamma_n^{(k)}}{\gamma_n^{(0)}}$. Clearly, ∼^B is an equivalence relation on the set \mathbb{N}_0 .

Definition 2.3. Let $B = {B_n}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in T. A weight sequence ${B_n}$ of *type* II is said to be of *type* III if ∼^B partitions \mathbb{N}_0 into a finite number of equivalence classes.

Remark 2.4*.* The above definitions are motivated by similar definitions given in [2]. In fact for $dim K = N < \infty$ the two definitions refer to the same idea. In [2] the minimal reducing subspaces of $M_{z}^{N}(N>1)$ on the space H_{z}^{2}
 $\sum_{n=1}^{\infty} a_{n} x^{k} \cdot ||f||^{2} = \sum_{n=1}^{\infty} a_{n} |a_{n}|^{2} \leq \infty$ is determined where $w = 1$ [2] the minimal reducing subspaces of $M_z^N(N > 1)$ on the space $H_w^2 := \{f(z) = \sum_{k=0}^{\infty} a_k z^k : ||f||_w^2 = \sum w_k |a_k|^2 < \infty \}$ is determined, where $w = \{w_0, w_1, \dots\}$ is a sequence of positive numbers. If in the present study we consider $dim K =$ N, and for each $n \in \mathbb{N}_0$ define $B_n = diag(\sqrt{w_{nN}}, \sqrt{w_{nN+1}}, \dots, \sqrt{w_{(n+1)N-1}}),$ then M_z^N on H_w^2 is unitarily equivalent to the unilateral shift S on $l_B^2(K)$.

Definition 2.5. Let $F = \sum_{i \in \mathbb{N}_0} \alpha_i f_{i,0}$ be a non-zero vector in $l_B^2(K)$. The order of F denoted as $o(F)$ is defined as the smallest non negative integer m order of F, denoted as $o(F)$, is defined as the smallest non negative integer m such that $\alpha_m \neq 0$.

Definition 2.6. If $f = \sum_{i \in \mathbb{N}_0} \alpha_i e_i$ is a non-zero vector in K, then order of f, denoted as $o(f)$ is defined to be the smallest non negative integer m such that denoted as $o(f)$, is defined to be the smallest non negative integer m such that $\alpha_m \neq 0.$

Definition 2.7. Let Y be a non-zero non-empty subset of K. Then order of Y, denoted as $o(Y)$, is defined to be the non negative integer m satisfying the following conditions:

(i) $o(f) \geq m$ for all $f \in Y$, and

(ii) there exists $\tilde{f} \in Y$ such that $o(\tilde{f}) = m$.

Definition 2.8. Let X be a subset of $l_B^2(K)$ and $\mathcal{L}_X := \{f_0 : (f_0, f_1, ...) \in X\}$.
If \mathcal{L}_X is a non-zero subset of K, then order of X, denoted as $o(X)$ is defined If \mathcal{L}_X is a non-zero subset of K, then order of X, denoted as $o(X)$, is defined as $o(\mathcal{L}_X)$.

Definition 2.9. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in T. A linear expression $F = \sum_{i \in \mathbb{N}_0} \alpha_i f_{i,0}$ in $l_B^2(K)$ is said to be B-transparent if for every pair of non-zero scalars α_i and α_j , we have $i \sim B_j$.

Definition 2.10. Let $B = {B_n}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in T, and S be the unilateral shift on $l_B^2(K)$. Let S be the vector
space of all finite linear combinations of finite products of S and S^* . For nonspace of all finite linear combinations of finite products of S and S^* . For nonzero $F \in l_B^2(K)$, let $SF := \{TF : T \in S\}$. Then the closure of SF in $l_B^2(K)$ is
a reducing subspace of S-denoted by X_{B} . Clearly X_{B} is the smallest reducing a reducing subspace of S, denoted by X_F . Clearly X_F is the smallest reducing subspace of $l_B^2(K)$ containing F.

Lemma 2.11. *Let* $B = \{B_n\}_{n \in \mathbb{N}_0}$ *be a uniformly bounded sequence of operators in* T, and for each $n \in \mathbb{N}_0$ *let* $\gamma_j^{(n)}$ *denote the unique non zero entry occurring in the* jth *column of the matrix of* B_n *. If* S *is the unilateral shift on* $l_B^2(K)$, then for $i, j \in \mathbb{N}_0$, the following will hold:

(i)
$$
S^* f_{i,j} = \begin{cases} 0 & \text{if } j = 0, \\ \left| \frac{\gamma_i^{(j)}}{\gamma_i^{(j-1)}} \right| f_{i,j-1} & \text{if } j > 0. \end{cases}
$$

(ii) For any non negative integer k *,* $(S^k)^* S^k f_{i,j} = \left| \frac{\gamma_i^{(j+k)}}{\gamma_i^{(j)}} \right|$ *i* $^{2}f_{i,j}$.

Proof. (i) For $i \in \mathbb{N}_0$, $\langle SX, f_{i,0} \rangle = 0$ for all $X \in l_B^2(K)$, which implies $S^* f_{i,0} = 0$ 0.

Next let $X = (x_0, x_1, \ldots) \in l_B^2(K)$ and $x_j = \sum_{t=0}^{\infty} \alpha_t^{(j)} e_t$ for each $j \in \mathbb{N}_0$. Then for $j > 0$, we have $\langle SX, f_{i,j} \rangle = \frac{1}{|\gamma_i^{(j)}|} \langle B_j x_{j-1}, B_j e_i \rangle = \alpha_i^{(j-1)} |\gamma_i^{(j)}|$. Choosing $\lambda_{i,j} =$ $\frac{\gamma_i^{(j)}}{\gamma_i^{(j-1)}}$, we get $\langle X, \lambda_{i,j} f_{i,j-1} \rangle = \frac{\lambda_{i,j}}{|\gamma_i^{(j-1)}|} \langle B_{j-1} x_{j-1}, B_{j-1} e_i \rangle = \frac{\lambda_{i,j}}{|\gamma_i^{(j-1)}|}$ $\alpha_i^{(j-1)} \|B_{j-1}e_i\|^2 = \alpha_i^{(j-1)} |\gamma_i^{(j)}|.$

M. Hazarika and Pearl S. Gogoi 47

Therefore, $\langle SX, f_{i,j} \rangle = \langle X, \lambda_{i,j} f_{i,j-1} \rangle$, and so $S^* f_{i,j} = \lambda_{i,j} f_{i,j-1}$ for $j > 0$. (ii) As $S^*Sf_{i,j} =$ $\frac{\gamma_i^{(j+1)}}{\gamma_i^{(j)}}$ $\left| S^* f_{i,j+1} = \left| \frac{\gamma_i^{(j+1)}}{\gamma_i^{(j)}} \right| \right|$ ${}^2f_{i,j}$, so the result holds for $k=1$. Suppose, $(S^*)^n S^n f_{i,j} =$ $\frac{\gamma_i^{(j+n)}}{\gamma_i^{(j)}}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\int_{i,j}^{2}$ holds for $n = k$. We will show that it also holds for $n = k + 1$.

$$
(S^*)^{k+1} S^{k+1} f_{i,j} = \left| \frac{\gamma_i^{(j+1)}}{\gamma_i^{(j)}} \right| S^*(S^{*^k} S^k) f_{i,j+1}
$$

$$
= \left| \frac{\gamma_i^{(j+1)}}{\gamma_i^{(j)}} \right| \left| \frac{\gamma_i^{(j+1+k)}}{\gamma_i^{(j+1)}} \right|^2 S^* f_{i,j+1}
$$

$$
= \left| \frac{\gamma_i^{(j+1)}}{\gamma_i^{(j)}} \right| \left| \frac{\gamma_i^{(j+1+k)}}{\gamma_i^{(j+1)}} \right|^2 \left| \frac{\gamma_i^{(j+1)}}{\gamma_i^{(j)}} \right| f_{i,j}
$$

$$
= \left| \frac{\gamma_i^{(j+1+k)}}{\gamma_i^{(j)}} \right|^2 f_{i,j}
$$

Thus, the results holds for all k by induction. \square

Lemma 2.12. *Let* $B = \{B_n\}_{n \in \mathbb{N}_0}$ *be a uniformly bounded sequence of operators in* T, and for each $n \in \mathbb{N}_0$ *let* $\gamma_j^{(n)}$ *denote the unique non zero entry occurring in the* j^{th} *column of the matrix of* B_n *. Let* $F = \sum_{i=0}^{\infty} \alpha_i f_{i,0}$ *be* B *-transparent in* $l_B^2(K)$ *with* $o(F) = m$ *. If for each* $k \in \mathbb{N}_0$ *,* $\tilde{F}_k :=$ $\frac{\gamma_m^{(k)}}{\gamma_m^{(0)}}$ $\sum_{i=0}^{\infty} \alpha_i f_{i,k}$, then *the following will hold:* (i) $(S^k)^* S^k F = \left| \frac{\gamma_m^{(k)}}{\gamma_m^{(0)}} \right|$ ^{2}F . *(ii)* $S\tilde{F}_k = \tilde{F}_{k+1}$ *and* $S^*\tilde{F}_k = \begin{cases} 0, & \text{if } k = 0; \\ \frac{\gamma_m^{(k)}}{(k+1)} \Big|^2 \tilde{F}_{k-1}, & \text{if } k > 0. \end{cases}$ $\begin{array}{c} \n\end{array}$ $\frac{\gamma_m^{(k)}}{\gamma_m^{(k-1)}}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\sum_{k=1}^{2} \tilde{F}_{k-1}$, if $k > 0$. *(iii)* X_F *is the closed linear span of* $\{\tilde{F}_k : k \in \mathbb{N}_0\}.$

Proof. Since $o(F) = m$ so $\alpha_i = 0$, $\forall i < m$. Let $\Lambda = \{i \geq m : \alpha_i \neq 0\}$. Then $m \in \Lambda$, and for $i \in \Lambda$, $\frac{\gamma_i^{(k)}}{\gamma_i^{(0)}} = \frac{\gamma_m^{(k)}}{\gamma_m^{(0)}}$ for each positive integer k.

(i) For $i \in \Lambda$ and positive integer k, by Lemma 2.11(ii) we have $(S^k)^*S^kf_{i,0} = |$ $\frac{\gamma_i^{(k)}}{\gamma_i^{(0)}}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\binom{2}{i,0}$ = $\Big|$ $\frac{\gamma_m^{(k)}}{\gamma_m^{(0)}}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\int_{i,0}^{2} f_{i,0}.$ Thus, $(S^k)^* S^k F = (S^k)^* S^k (\sum_{i \in \Lambda} \alpha_i f_{i,0}) = \sum_{i \in \Lambda} \alpha_i$ $\frac{\gamma_m^{(k)}}{\gamma_m^{(0)}}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\binom{2}{i,0}$ = $\Big|$ $\frac{\gamma_m^{(k)}}{\gamma_m^{(0)}}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$ ^{2}F . (ii) For $i, j \in \mathbb{N}_0$, $Sf_{i,j} =$ $\frac{\gamma_i^{(j+1)}}{\gamma_i^{(j)}}$ $\left|f_{i,j+1},\right\rangle$ and so $S\tilde{F}_k =$ $\gamma_m^{(k)}$ $\gamma_m^{(0)}$ $\begin{array}{c} \n\end{array}$ Δ *i*∈Λ $\alpha_i\,Sf_{i,k} = \sum$ *i*∈Λ α_i ^{\vert} $\frac{\gamma_i^{(k)}}{\gamma_i^{(0)}}$ $\begin{array}{c} \n\end{array}$ $\begin{array}{c} \n\end{array}$ $\frac{\gamma_i^{(k+1)}}{\gamma_i^{(k)}}$ $\left| f_{i,k+1} = \right|$ $\gamma_m^{(k+1)}$ $\gamma_m^{(0)}$ $\begin{array}{c} \n\end{array}$ \sum *i*∈Λ $\alpha_i f_{i,k+1} = \tilde{F}_{k+1}.$

As
$$
S^* f_{i,0} = 0
$$
 so $S^* \tilde{F}_0 = 0$.
\nFor $k > 0$, $S^* \tilde{F}_k = \left| \frac{\gamma_m^{(k)}}{\gamma_m^{(0)}} \right| \sum_{i=0}^{\infty} \alpha_i S^* f_{i,k} = \left| \frac{\gamma_m^{(k)}}{\gamma_m^{(0)}} \right| \sum_{i=0}^{\infty} \alpha_i \left| \frac{\gamma_i^{(k)}}{\gamma_i^{(k-1)}} \right| f_{i,k-1} = \left| \frac{\gamma_m^{(k)}}{\gamma_m^{(k-1)}} \right|^2 \tilde{F}_{k-1}$

(iii) By (ii) each $\tilde{F}_k \in X_F$ and so the *closed linear span*{ $\tilde{F}_k : k \in \mathbb{N}_0$ } is a non-zero reducing subspace of W contained in X_F . Thus, by minimality of X_F , we have $X_F = closed\ linear\ span{\{\tilde{F}_k : k \in \mathbb{N}_0\}}$. X_F , we have $X_F = closed\ linear\ span{\tilde{F}_k : k \in \mathbb{N}_0}$.

Definition 2.13. Let $B = {B_n}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in T, and S be the unilateral shift on $l_B^2(K)$. Let $\Omega_1, \Omega_2, ...$ be the disjoint equivalence classes of \mathbb{N}_2 under the relation \sim^B . Consider $F =$ the disjoint equivalence classes of \mathbb{N}_0 under the relation ∼^B. Consider $F =$ $\sum_{i=0}^{\infty} \alpha_i f_{i,0}$ in $l_B^2(K)$. For each k, let $q_k := \sum_{i \in \Omega_k} \alpha_i g_{i,0}$. Dropping those q_k
which are zero, the remaining q_i 's are arranged as f_i , f_j , in such a way that which are zero, the remaining q_k 's are arranged as f_1, f_2, \dots in such a way that for $i < j$ we have $o(f_i) < o(f_j)$. The resulting decomposition $F = f_1 + f_2 + ...$ is called the canonical decomposition of F . Clearly each f_i is B -transparent in $l_B^2(K)$.
If there

If there exists a finite positive integer n such that $F = f_1 + f_2 + \cdots + f_n$, then F in the above case is said to have a finite canonical decomposition.

Lemma 2.14. *Let* $B = \{B_n\}_{n \in \mathbb{N}_0}$ *be a uniformly bounded sequence of operators in* T, and for each $n \in \mathbb{N}_0$ *let* $\gamma_j^{(n)}$ *denote the unique non zero entry occurring in the j*th column of the matrix of B_n . Let S be the unilateral shift on $l_B^2(K)$,
and X be a reducing subspace of S in $l^2(K)$, If $F = \sum_{x \in S} \alpha(x, in X)$ has a *and* X *be a reducing subspace of* S *in* $l_B^2(K)$ *. If* $F = \sum_{i \in \mathbb{N}_0} \alpha_i f_{i,0}$ *in* X *has a* finite canonical decomposition $F = f_1 + f_2 + \ldots + f_n$ then each f, is in X_p *finite canonical decomposition* $F = f_1 + f_2 + \cdots + f_n$ *, then each* f_i *is in* X_F *.*

Proof. Let $o(f_i) = m_i$ so that $m_1 < m_2 < \cdots < m_n$ and no two of them are B-related. For $2 \leq i \leq n$, as $m_1 \nsim^B m_i$, and so there exists a positive integer k_i such that $\frac{\gamma_{m_i}^{(k_i)}}{\gamma_{m_i}^{(0)}} \neq \frac{\gamma_{m_i}^{(k_i)}}{\gamma_{m_i}^{(0)}}$. Let k_i be the smallest positive integer having this property.

Let $q_1 := F$ and for $2 \leq i \leq n$, $q_i := \left[\left| \frac{\gamma_{m_i}^{(k_i)}}{\gamma_{m_i}^{(0)}} \right|^2 - (S^{k_i})^* S^{k_i} \right] q_{i-1}$. *mi* Then $q_i \in X_F \ \forall \ 1 \leq i \leq n$. Also $q_n = (\beta_2 \dots \beta_n) f_1$, where $\beta_i =$ $\frac{\gamma_{m_i}^{(k_i)}}{\gamma_{m_i}^{(0)}}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$ 2 − $\overline{\mathbf{r}}$ $\frac{\gamma_{m_1}^{(k_i)}}{\gamma_{m_1}^{(0)}}$ $\overline{}$ ² for $2 \le i \le n$. As each $\beta_i \neq 0$ so $q_n \in X_F \implies f_1 \in X_F$. In a similar way it can be shown that f_2, \ldots, f_n are also in X_F .

3 An Extremal Problem

Theorem 3.1. *Let* $B = \{B_n\}_{n \in \mathbb{N}_0}$ *be a uniformly bounded sequence of opera*tors in T, and S be the unilateral shift on $l_B^2(K)$. Let X be a non zero reducing

M. Hazarika and Pearl S. Gogoi 49

subspace of S in $l_B^2(K)$ with $o(X) = m$. Then the extremal problem

$$
\sup\{Re \ \alpha_m : F = (f_0, f_1, \ldots) \in X, \ \|F\| \le 1, \ f_0 = \sum_{i \in \mathbb{N}_0} \alpha_i e_i.\}
$$

has a unique solution $G = \sum_{i \in \mathbb{N}_0} \alpha_i g_{i,0} \in X$ *with* $||G|| = 1$ *and* $o(G) = m$ *.*

Proof. For $F = (f_0, f_1, \dots) \in X$, we define $\varphi : X \to \mathbb{C}$ as $\varphi(F) = \alpha_m$ where $f_0 = \sum_{i \in \mathbb{N}_0} \alpha_i e_i$. Since $o(X) = m$, so φ is a non zero bounded linear functional on X. From [1], it follows that the extremal problem has a unique solution G. on X. From [1], it follows that the extremal problem has a unique solution G in X such that $||G|| = 1$, $\varphi(G) > 0$ and

$$
\varphi(G) = \sup \{ Re \; \varphi(F) : F \in X, \; ||F|| \le 1 \}
$$

=
$$
\sup \{ Re \; \alpha_m : F = (f_0, f_1, \ldots) \in X, \; ||F|| \le 1, \; f_0 = \sum_{i \in \mathbb{N}_0} \alpha_i e_i. \}
$$

We claim that G has the form $G = \sum_i \alpha_i f_{i,0}$ with $o(G) = m$.
If $F \in X$ and $||F|| < 1$ then by maximality of G we must have

If $F \in X$ and $||F|| < 1$, then by maximality of G we must have $Re\varphi(F) < \varphi(G)$. Now as $Re\varphi(G+SF) = \varphi(G)$ $\forall F \in X$, so we must have $||G+SF|| \ge 1$. This implies that $G \perp SF \forall F \in X$. In particular $\langle G, SS^*G \rangle = 0$ which implies that $S^*G = 0$. Thus G is of the form $G = \sum_{i \in \mathbb{N}_0} \alpha_i f_{i,0}$. Also $\varphi(G) > 0$ and $\alpha(X) = m$ together imply $\alpha(G) = m$ $o(X) = m$ together imply $o(G) = m$. Note: The function G in Theorem 3.1 will be called the *extremal function* of

X.

Theorem 3.2. *Let* $B = \{B_n\}_{n \in \mathbb{N}_0}$ *be a uniformly bounded sequence of operators in* \mathcal{T} *, and* S *be the unilateral shift on* $l_B^2(K)$ *. If the extremal function of a*
non-zero reducing subgrace of S in $l^2(K)$ has a finite canonical decomposition *non-zero reducing subspace of* S in $l_B^2(K)$ *has a finite canonical decomposition,*
then it must be B transparent *then it must be* B*-transparent.*

Proof. Let X be a non-zero reducing subspace of S in $l_B^2(K)$ and $G = \sum_i \alpha_i f_{i,0}$ be its extremal function with $o(G) = m$. Let $G = a_1 + a_2 + \cdots + a_n$ be the be its extremal function with $o(G) = m$. Let $G = g_1 + g_2 + \cdots + g_n$ be the finite canonical decomposition of G . Each g_i is B-transparent and also by Lemma 2.14, each of them is in X_G . Clearly $o(g_1) = m$ and $||g_1|| \le ||G|| = 1$.
So by extremality of G, we must have $G = g_1$. Thus G is B-transparent. \square So by extremality of G, we must have $G = g_1$. Thus G is B-transparent.

4 Minimal reducing subspaces

Theorem 4.1. *Let* $B = {B_n}_{n \in \mathbb{N}_0}$ *be a uniformly bounded sequence of operators in* \mathcal{T} *, and for each* $n \in \mathbb{N}_0$ *let* $\gamma_j^{(n)}$ *denote the unique non zero entry occurring in the* jth *column of the matrix of* B_n *. Also let* S *be the unilateral shift on* $l_B^2(K)$ *. If* X *is a minimal reducing subspace of* S *in* $l_B^2(K)$ *and* $F - \sum_{\alpha} c$, *f*, *s is in* X, then F *is* B transparent $F = \sum_i \alpha_i f_{i,0}$ *is in* X, then F *is* B-transparent.

Proof. Let $o(F) = m$ and, if possible F is not B-transparent. So we must have a positive integer $k > m$ such that $\alpha_k \neq 0$ and $k \nsim^B m$. This means that there exists a positive integer l such that $\frac{\gamma_k^{(l)}}{\gamma_k^{(0)}} \neq \frac{\gamma_m^{(l)}}{\gamma_m^{(0)}}$.

We define $G := (S^l)^* S^l F \frac{\gamma_m^{(l)}}{(0)}$ $\gamma_m^{(0)}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$ ^{2}F . Clearly, G is in X, and we get

$$
G = (S^{l})^{*} S^{l} F - \left| \frac{\gamma_{m}^{(l)}}{\gamma_{m}^{(0)}} \right|^{2} F
$$

\n
$$
= (S^{l})^{*} S^{l} \left(\sum_{i=m}^{\infty} \alpha_{i} f_{i,0} \right) - \left| \frac{\gamma_{m}^{(l)}}{\gamma_{m}^{(0)}} \right|^{2} \left(\sum_{i=m}^{\infty} \alpha_{i} f_{i,0} \right)
$$

\n
$$
= \sum_{i=m}^{\infty} \alpha_{i} \left| \frac{\gamma_{i}^{(l)}}{\gamma_{i}^{(0)}} \right|^{2} f_{i,0} - \sum_{i=m}^{\infty} \alpha_{i} \left| \frac{\gamma_{m}^{(l)}}{\gamma_{m}^{(0)}} \right|^{2} f_{i,0}
$$

\n
$$
= \sum_{i=m+1}^{\infty} \alpha_{i} \left[\left| \frac{\gamma_{i}^{(l)}}{\gamma_{i}^{(0)}} \right|^{2} - \left| \frac{\gamma_{m}^{(l)}}{\gamma_{m}^{(0)}} \right|^{2} \right] f_{i,0}
$$

Thus, $G = \sum_{i=m+1}^{\infty} \gamma_i f_{i,0}$, where $\gamma_i = \alpha_i \left[\left| \frac{\gamma_i^{(l)}}{\gamma_i^{(0)}} \right|^2 - \left| \frac{\gamma_m^{(l)}}{\gamma_m^{(0)}} \right|^2 \right]$. Also since $\gamma_k \neq 0$ so $G \neq 0$. Moreover, $o(F) < o(G) \implies F \notin X_G$. Hence X_G is a non-zero reducing subspace properly contained in X which contradicts the minimality of the X. Hence F must be B-transparent. \Box

As an immediate corollary of the above result we have the following :

Corollary 4.2. *The extremal function of a minimal reducing subspace of* S *in* $l_B^2(K)$ *is always B*-transparent.

Theorem 4.3. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of op*erators in* \mathcal{T} , and S *be the unilateral shift on* $l_B^2(K)$ *. Let* X *be a reducing*
expressed of S in $l^2(K)$. Then X is minimal if and only if $X - X_D$ where F subspace of S in $l_B^2(K)$. Then X is minimal if and only if $X = X_F$ where F *is* B*-transparent.*

Proof. If X is minimal and G is the associated extremal function, then the reducing subspace $X_G \subseteq X$. The minimality of X gives $X = X_G$. Note that by Corollary 4.2, G is B-transparent.

Conversely, let $X = X_F$, where F is B-transparent. Clearly X_F is a reducing subspace. We claim that X_F is minimal. Let Y be a non zero reducing subspace of S contained in X_F and H be its extremal function, which is transparent. Then $H \in X_F$ and so by Lemma 2.12(i), H is a scalar multiple of F. In particular, $F \in Y$. Thus, $Y = X_F$ which means that X_F must be minimal. \Box

Corollary 4.4. *Every reducing subspace of* S in $l_B^2(K)$, whose extremal function has a finite cononical decomposition, contains a minimal reducing subspace *tion has a finite canonical decomposition, contains a minimal reducing subspace.*

Proof. The proof follows immediately from Theorem 3.2 and Theorem 4.3. \Box

5 Conclusion

Theorem 5.1. *Let* $B = {B_n}_{n \in \mathbb{N}_0}$ *be a uniformly bounded sequence of operators in* \mathcal{T} , and S *be the unilateral shift on* $l_B^2(K)$. If the weight sequence ${B_n}_{n \in \mathbb{N}_0}$ *is of type I, then* $X_{f_{n,0}}$ *for* $n \in \mathbb{N}_0$ *are the only minimal reducing* subspaces of S in $l_B^2(K)$.

Proof. Let X be a minimal reducing subspace of S and G be its extremal function so that $X = X_G$. Since the weight sequence ${B_n}_{n \in \mathbb{N}_0}$ is of *type* I, so the only transparent functions are $f_{n,0}$ for $n \in \mathbb{N}_0$ and their scalar multiples.
The result now follows from Theorem 4.3. The result now follows from Theorem 4.3.

Theorem 5.2. *Let* $B = {B_n}_{n \in \mathbb{N}_0}$ *be a uniformly bounded sequence of operators in* \mathcal{T} , and S *be the unilateral shift on* $l_B^2(K)$ *. If* $\{B_n\}_{n\in\mathbb{N}_0}$ *is of type II,* then S has minimal reducing subspaces other than X_n , $n \in \mathbb{N}_0$. *then* S has minimal reducing subspaces other than $X_{f_n,0}$, $n \in \mathbb{N}_0$.

Proof. Since the weight sequence ${B_n}_{n \in \mathbb{N}_0}$ is of *type* II, so we can form a transparent function $F = \sum_{i \in \mathbb{N}_0} \alpha_i f_{i,0}$ where more than one α_i 's are non zero.
Closely Y_i is a minimal reducing subgrass of S in $l^2(K)$ such that $Y_i \neq Y$ Clearly, X_F is a minimal reducing subspace of S in $l_B^2(K)$ such that $X_F \neq X_{f_{n,0}}$ for any $n \in \mathbb{N}$. for any $n \in \mathbb{N}_0$.

Theorem 5.3. *Let* $B = \{B_n\}_{n \in \mathbb{N}_0}$ *be a uniformly bounded sequence of operators in* \mathcal{T} *, and* S *be the unilateral shift on* $l_B^2(K)$ *. If* $\{B_n\}_{n \in \mathbb{N}_0}$ *is of type III,* then every reducing subspace of S *in* $l^2(K)$ must contain a minimal reducing *then every reducing subspace of* S in $l_B^2(K)$ *must contain a minimal reducing*
subspace *subspace.*

Proof. Let X be a reducing subspace of S and G be its extremal function. Since the weight sequence ${B_n}_{n\in\mathbb{N}_0}$ is of *type* III, so G must have a finite canonical decomposition, say $g_1 + g_2 + \ldots + g_n$. By Lemma 2.14, for each $1 \leq i \leq n$, $g_i \in X$ and so each X_{g_i} is a minimal reducing subspace of S in $l_B^2(K)$ contained
in X in X. \Box

References

- [1] Ferguson, T. J., *Extremal problems in Bergman spaces*, Doctoral Thesis, University of Michigan, 2011.
- [2] Stessin, M., Zhu, K., *Reducing subspaces of weighted shift operators*, Proc. Amer. Math. Soc., **130** (9) (2002), 2631-2639.
- [3] Hazarika, M., Arora, S.C., *Minimal reducing subspaces of the unilateral shift operator on an operator weighted sequence space*, Indian J. pure appl. Math., **35** (6) (2004), 747-757.
- [4] Shields, A.L., *Weighted shift operators and analytic function theory*, Topics in operator theory, Math surveys, **13** (1974).
- [5] Lambert, A., *Unitary equivalence and reducibility of invertibly weighted shifts*, Bull. Austral. Math., **5** (1971), 157-173.