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Abstract

The Ornstein-Uhlenbeck process is a well-known process which was
wildly applied. This paper introduces the two parameters Ornstein-
Uhlenbeck process, which is a simple extension of this process, by allowing
two processes to depend on each other. In our research, we derive the
analytical solution of our new process. Also, we investigate its proper-
ties, and give the condition for mean-reversion property. Moreover, some
numerical examples are given to illustrate our result.

1. Introduction

In 1930, the Ornstein-Uhlenbeck process was introduced in [1] by Leonard Orn-
stein and George Eugene Uhlenbeck. This process is defined to be the solution
of stochastic differential equation:

dX(t) = θ(μ − X(t))dt + σdW (t), (1)

where θ �= 0, μ and σ > 0 are constant parameters and W (t) is the Wiener
process. The analytical solution of (1) with constant initial condition X(0) = x0
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is:

X(t) = x0e
−θt + μ(1 − e−θt) + σ

∫ t

0

e−θ(t−s)dW (s), (2)

where
∫ t

0
e−θ(t−s)dW (s) is a stochastic integral. The Ornstein-Uhlenbeck pro-

cess is a Gaussian and Markovian process with mean x0e
−θt + μ(1− e−θt) and

variance σ2

2θ (1 + e−2θt). With positive θ, the Ornstein-Uhlenbeck process is
mean-reverting, which mean that it convert to its some constant level when
t tends to infinity. Its stationary (long-term) process is Gaussian with mean
μ and variance σ2

2θ
(proof of these properties can be found in any standard

stochastic calculus textbook such as [2]).

There are many applications of this process in several research areas. It was
used to model a mean-reverting situation under the influence of friction, for ex-
ample in physics, the Hookean spring whose dynamics is highly overdamped
with friction coefficient (see [3]). In biology, this process was used to simulate
the membrane potential of a neuron which is perturbed by electrical impulses
from the surrounding network (see [4]). Moreover, this process also be applied
in many financial mathematical models, for example, in [5], Oldrich Vasicek
use it to model the instantaneous interest rate over times.

One of the important limitation of this process is that it depends only on
itself, but in real world situation, sometimes the value that we deal with is also
depends on other stochastic processes. In that case, this process cannot be
applied. Many researchers tried to fix this problem by adding some stochastic
parameters and got multi-parameters Ornstein-Uhlenbeck process such as [6],[7]
and [8]. However, these past studies did not focus on the theoretical side and
they did not consider the case that both of it depend on each other. Therefore,
in this paper, we will introduce the two parameters Ornstein-Uhlenbeck process
in general case, solve for its solution analytically and give a condition of mean-
reverting property.

2. Preliminaries

In this section, we will introduce some well-known propositions, which can be
found in [2].

Proposition 1 (Multivariate Ito’s lemma) Let X1(t), ..., Xn(t) be Ito’s pro-
cesses such that dXi(t) = ai(t)dt +

∑m
k=1 bik(t)dWk(t). If f : R

n → R is twice
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continuously differentiable, then

df
(
X1(t), ..., Xn(t)

)
=

n∑
i=1

∂f

∂xi
dXi(t) +

1
2

n∑
i=1

n∑
k=1

∂2f

∂xi∂xj
d
[
Xi, Xj

]
(t).

Proposition 2 (Zero mean property) Let X(t) be an adapted process such that∫ t

0
X2(s)dW (s) is integrable. Then

∫ t

0
X(s)dW (s) is a Gaussian process with

zero mean.

Proposition 3 (Ito’s isometry property) Let X(t), Y (t) be adapted processes
such that

∫ t

0
X2(s)dW1(s) and

∫ t

0
Y 2(s)dW2(s) are integrable. Then

E

[∫ t

0

X(s)dW1(s)
∫ t

0

Y (s)dW2(s)

]
=

∫ t

0

X(s)Y (s)d
[
W1, W2

]
(s).

3. Main Result

Definition 1 The processes X1 and X2 are called two parameters Ornstein-
Uhlenbeck process if it satisfy these following two stochastic differential equa-
tions:

dX1(t) = θ11

(
μ11 − X1(t)

)
dt + θ12

(
μ12 − X2(t)

)
dt +

m∑
k=1

σ1kdWk(t),

dX2(t) = θ21

(
μ21 − X2(t)

)
dt + θ22

(
μ22 − X1(t)

)
dt +

m∑
k=1

σ2kdWk(t),

(3)

where σik are not all zero for each i = 1, 2 and W1(t) and W2(t) are indepen-
dent Wiener processes.

Lemma 1 If θ11θ22 − θ12θ21 �= 0, the system (3) can be rewritten as:

dX1(t) = θ11

(
μ1 − X1(t)

)
dt + θ12

(
μ2 − X2(t)

)
dt +

m∑
k=1

σ1kdWk(t),

dX2(t) = θ21

(
μ1 − X1(t)

)
dt + θ22

(
μ2 − X2(t)

)
dt +

m∑
k=1

σ2kdWk(t).

(4)
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Proof. Choose μ1 and μ2 to be the solution of the system

θ11x1 + θ12x2 = θ11μ11 + θ12μ12,

θ21x1 + θ22x2 = θ21μ21 + θ22μ22,

which exists since θ11θ22 − θ12θ21 �= 0. �

In real world situation, the condition θ11θ22 − θ12θ21 �= 0 is usually hold.
So it is suffices to focus on (4) instead of (3).

Theorem 1 Consider (4) with initial condition X1(0) = x
(1)
0 and X2(0) =

x
(2)
0 . Let Δ = (θ11 − θ22)2 + 4θ12θ21.

i) If Δ = 0, then for i, j ∈ {1, 2} with i �= j,

Xi(t) = μi + (x(i)
0 − μi)e−λt(1 + (λ − θii)t) − (x(j)

0 − μj)e−λtθijt

+
m∑

k=1

∫ t

0

σike−λ(t−s)(1 + (λ − θii)(t − s)) − σjke−λ(t−s)θij(t − s)dWk(s),

where λ = 1
2(θ11 + θ22).

ii) If Δ �= 0, then for i, j ∈ {1, 2} with i �= j,

Xi(t) = μi + (x
(i)
0 − μi)

(ν − θii)e
−λt − (λ − θii)e

−νt

λ − ν
+ (x

(j)
0 − μj )

θij(e
−νt − e−λt)

λ − ν

+

m∑
k=1

∫ t

0
σik

(ν − θii)e−λ(t−s) − (λ − θii)e−ν(t−s)

λ − ν

+ σjk
θij (e−ν(t−s) − e−λ(t−s))

λ − ν
dWk(s),

where λ = 1
2 [(θ11 + θ22) +

√
Δ] and ν = 1

2 [(θ11 + θ22) −
√

Δ].

Proof Firstly, will verify that this is indeed a solution in case that m = 1.
The result can be extend to case m > 1 easily.

If Δ = 0, let i, j ∈ {1, 2} with i �= j. Define qii(t) = eλt(1 − (λ − θ11)t)
and qij(t) = eλtθijt. Using Proposition 1 with functions fi(x1, x2) = qii(t)xi +
qij(t)xj.

Then
dfi(x1, x2) = qii(t)dxi + qij(t)dxj + [(qii(t)θjj + qij(t)θji)xi + (qii(t)θij + qij(t)θjj)xj ]dt

= [(qii(t)θjj + qij(t)θji)μi + (qii(t)θij + qij(t)θjj )μj ]dt + [qii(t)σi + qij(t)σj ]dW (t)
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Integrate both side from 0 to t and get

qii(t)xi + qij(t)xj = x
(i)
0 +

∫ t

0
(qii(t)θjj + qij(t)θji)μi + (qii(t)θij + qij(t)θjj)μjdt

+

∫ t

0
qii(t)σi + qij(t)σjdW (t)

= x
(i)
0 + (qii(t) − 1)μi + qij(t)μj +

∫ t

0
qii(t)σi + qij(t)σjdW (t)

After that, solve the linear system for x1 and x2 and then the result is
obtained.

On the other hand, if Δ �= 0, we prove in the similar way but using
qii(t) = (ν−θii)e

λt−(λ+θii)e
νt

λ−ν and qij(t) = e
θij(e

νt−eλt)
λ−ν instead. �

Corollary 1 The process X1 and X2 satisfying (4) is a Gaussian process.

i) If Δ = 0, then for i, j ∈ {1, 2} with i �= j,

E[Xi(t)] = μi + (x(i)
0 − μi)e−λt(1 + (λ − θii)t) − (x(j)

0 − μj)e−λtθijt,

Var[Xi(t)] =
m∑

k=1

(
Ak

2λ
+

Bk

4λ2
+

Ck

4λ3
) − [(

Ak

2λ
+

Bk

4λ2
+

Ck

4λ3
)

+ (
Bk

2λ
+

Ck

2λ2
)t + (

Ck

2λ
)t2]e−2λt,

Cov[Xi(t), Xj(t)] =
m∑

k=1

(
Dk

2λ
+

Ek

4λ2
+

Fk

4λ3
) − [(

Dk

2λ
+

Ek

4λ2
+

Fk

4λ3
)

+ (
Ek

2λ
+

Fk

2λ2
)t + (

Fk

2λ
)t2]e−2λt,

where Ak = σ2
ik, Bk = 2σ2

ik(λ−θii)−2σikσjkθij , Ck = σ2
ik(λ−θii)2 +σ2

jkθ2
ij −

2σikσjkθij(λ − θii), Dk = σikσjk, Ek = σ2
ikθji + σ2

jkθij,

Fk = σ2
ikθji(λ − θii) + σ2

jkθij(λ − θjj) + σikσjk((λ − θii)(λ − θjj) + θijθji).
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ii) If Δ �= 0, then for i, j ∈ {1, 2} with i �= j,

E[Xi(t)] = μi + (x(i)
0 − μi)

(ν − θii)e−λt − (λ − θii)e−νt

λ − ν

+ (x(j)
0 − μj)

θij(e−νt − e−λt)
λ − ν

,

Var[Xi(t)] =
1

(λ − ν)2

m∑
k=1

(
Ak

2λ
+

Bk

2(λ + ν)
+

Ck

2ν
) − (

Ak

2λ
)e−2λt

+ (
Bk

2(λ + ν)
)e−(λ+ν)t + (

Ck

2ν
)e−2νt,

Cov[Xi(t), Xj(t)] =
1

(λ − ν)2

m∑
k=1

(
Dk

2λ
+

Ek

2(λ + ν)
+

Fk

2ν
) − (

Dk

2λ
)e−2λt

+ (
Ek

2(λ + ν)
)e−(λ+ν)t + (

Fk

2ν
)e−2νt,

where
Ak = σ2

ik(ν − θii)
2 + 2σikσjkθij (ν − θii) + σ2

jkθ2
ij ,

Bk = −(2σ2
ik(ν − θii)(λ − θii) + σikσjkθij (ν + λ − θii − θij ) + 2σ2

jkθ2
ij),

Ck = σ2
ik(λ − θii)

2 + 2σikσjkθij (λ − θii) + σ2
jkθ2

ij ,

Dk = σ2
ik(ν − θii)θji + σikσjk((ν − θii)(ν − θjj ) + θijθji) + σ2

jkθijθji,

Ek = −(σ2
ikθji(ν + λ − 2θii) + σikσjk((ν − θii)(λ− θjj ) + (λ − θii)(ν − θjj ) + 2θijθji)

+ σ2
jkθij (ν + λ − 2θjj)),

Fk = σ2
ik(λ − θii)θji + σikσjk((λ − θii)(λ − θjj ) + θijθji) + σ2

jkθijθji.

Proof. We can conclude by Proposition 2 that the integral term of the solution
has zero mean. Then, mean of these processes is equal to the remaining terms,
and hence first part of the theorem are done. Next, Proposition 3 is used to
calculate the variance and covariance. In case that Δ = 0,

Var[Xi] = E[(Xi − E[Xi])
2]

= E[[
m∑

k=1

∫ t

0
σike−λ(t−s)(1 + (λ − θii)(t − s)) + σjke−λ(t−s)θij (t − s)dWk(s)]2]

=
m∑

k=1

∫ t

0
[σike−λ(t−s)(1 + (λ − θii)(t − s)) + σjke−λ(t−s)θij (t − s)]2ds

=

m∑
k=1

∫ t

0
Ake−2λ(t−s) + Bk(t − s)e−2λ(t−s) + Ck(t − s)2e−2λ(t−s)ds

=

m∑
k=1

(
Ak

2λ
+

Bk

4λ2
+

Ck

4λ3
) − [(

Ak

2λ
+

Bk

4λ2
+

Ck

4λ3
) + (

Bk

2λ
+

Ck

2λ2
)t + (

Ck

2λ
)t2]e−2λt .
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The remaining cases can calculate in the similar way. �

Recall that the (one parameter) Ornstein-Uhlenbeck process is
mean-reverting when θ > 0 but for two parameters case is difference. We
can see from the result of Theorem 1 that it depends on the sign of real part of
λ and ν . Therefore, although we assume that θij > 0 for all i, j = 1, 2, if λ or
ν have negative real part, processes may be unbounded when t tend to infinity.
To get the mean-reverting processes, we need to guarantee that real part of λ
and ν must be positive. The next theorem will give a sufficient condition for
mean-reversion property.

Theorem 2 The process X1(t) and X2(t) that satisfying (4) is mean-reverting
if one of the following holds,

i) Δ ≥ 0 and θ11θ22 − θ12θ21 < 0, or
ii) Δ < 0 and θ11 + θ22 > 0, or
iii) θ11θ22 − θ12θ21 < 0 and θ11 + θ22 > 0.

where Δ was defined in Theorem 1. Moreover, if it is mean-reverting, the
process Xi(t) for i = 1, 2 will tend to be stationary Gaussian process with mean
μi and constant variance given by Ak

2λ
+ Bk

4λ2 + Ck

4λ3 if Δ = 0 or 1
(λ−ν)2

(Ak

2λ
+

Bk

2(λ+ν)
+ Ck

2ν
) in the other case, where Ak, Bk and Ck were defined in Corollary

1.

4. Numerical Examples

In this section, two numerical examples are given to illustrate our results.

Example 1 Let X1(t) and X2(t) be two parameters Ornstein-Uhlenbeck pro-
cesses satisfying

dX1(t) = (9 − X1(t))dt − (6 − X2(t))dt + 0.03dW1(t) + 0.02dW2(t),
dX2(t) = 2(3 − X1(t))dt + 4(−3 − X2(t))dt + 0.01dW2(t),

with initial condition X1(0) = X2(0) = 0.

Firstly, since θ11θ22 − θ12θ21 �= 0, we solve the linear system in Lemma 1
and get μ1 = 1 and μ2 = −2. The equations are rewritten to be:

dX1(t) = (1 − X1(t))dt − (−2 − X2(t))dt + 0.03dW1(t) + 0.02dW2(t),
dX2(t) = 2(1 − X1(t))dt + 4(−2 − X2(t)) + 0.01dW2(t).
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Since this example satisfies the first condition in Theorem 2, we can conclude
before solving that it is a mean-reverting process. To solve for the solution, we
calculate λ = 3 and ν = 2, and it follows from Theorem 1 that

X1(t) = 1 − e−3t +
∫ t

0

0.08e−2(t−s) − 0.05e−3(t−s)dW1(s)

+
∫ t

0

0.01e−2(t−s) − 0.01e−3(t−s)dW2(s),

X2(t) = −2 + 2e−3t +
∫ t

0

−0.06e−2(t−s) + 0.06e−3(t−s)dW1(s)

+
∫ t

0

−0.05e−2(t−s) + 0.06e−3(t−s)dW2(s).

Figure 1: Simulation of Example 1

Figure 1 show the simulation of X1(t) (blue line) and X2(t) (green line) of
Example 1 over the period 0 ≤ t ≤ 15 (value in x-axise is 0.005t). We can see
from the graph that X1(t) and X2(t) is convert to its long-term mean which is
1 and −2 respectively, with decreasing variance converting to constants. This
result is consistent with Corollary 1 and Theorem 2.

Example 2 Let X1(t) and X2(t) be two parameters Ornstein-Uhlenbeck pro-
cesses satisfying

dX1(t) = 3X1(t)dt + (1 − X2(t))dt + 2dW1(t)
dX2(t) = X1(t)dt − (1 − X2(t))dt + 5dW1(t)

with initial condition X1(0) = 2 and X2(0) = −1.
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We get Δ = 0 and λ = −2, so by Theorem 1,

X1(t) = 2e2t + 4te2t +
∫ t

0

2e2(t−s) − 3(t − s)e2(t−s)dW1(s),

X2(t) = 1 − 2e2t + 4te2t +
∫ t

0

5e2(t−s) − 3(t − s)e2(t−s)dW1(s).

Figure 2: Simulation of Example 2

Figure 2 show the simulation of X1(t) (blue line) and X2(t) (green line) of
Example 2 over the period 0 ≤ t ≤ 1 (value in x-axise is 0.002t). We can see
that X1(t) and X2(t) is unbounded with increasing variance, since λ have a
negative real part.

5. Conclusion

We have introduced the two parameters Ornstein-Uhlenbeck process which is an
extension of the Ornstein-Uhlenbeck process by allows two processes to depend
on each other. We derive its analytical solution, mean and variance Moreover,
we give a mean-reverting condition and analyze its long-term behaviour. The
numerical examples are given to illustrate our result. For the future work, we
suggest to extend this result to be n-parameters Ornstein-Uhlenbeck process,
to make it more general.
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