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Abstract

Ramsey algebras are algebras that induce Ramsey spaces, which are
generalizations of the Ellentuck space and the Milliken space. Previous
work has suggested a possible local version of Ramsey algebras induced
by infinite sequences. We formulate this local version and call it Ramsey
orderly algebra. In this paper, we present an introductory treatment of
this new notion and provide justification for it to be a sound approach
for further study in Ramsey algebras. The main connection is that an
algebra is Ramsey if and only if each of its induced orderly algebra is
Ramsey.

1 Introduction

Ramsey spaces as introduced by Carlson in [1] are generalizations of the El-
lentuck space [3] and the Milliken space [8]. This notion of Carlson has since
then attracted a considerable amount of interest due to its power to derive a
proliferation of known standard Ramsey theoretic results based on the exis-
tence of certain Ramsey spaces of variable words [1]. Examples of standard
results are the dual Ellentuck Theorem [2], the Graham-Rothschild theorem on
n-parameter sets [4], and the Hales-Jewett Theorem [5]. A modern reference
to the topic is [15].
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The topological property of a Ramsey space can, in fact, be reduced to some
combinatorial property. This is essentially captured by the abstract version of
Ellentuck’s Theorem, first pointed out by Carlson in the same article. In the
context of a Ramsey space associated to an algebra, such as a Ramsey space
of variable words, that combinatorial property is reflected in the algebra itself.
For this reason, Carlson conceived the notion of Ramsey algebras and its first
results followed suit through the work of the first author [11–14].

Every semigroup is a Ramsey algebra. The author’s work in [12] gener-
alizes the result to any algebra having sufficiently many infinite sequences of
the underlying set that induce what are here called orderly semigroups (see
Example 3.5). It is this observation that motivated the introduction of orderly
algebras (Definition 3.1). This notion shifts the subject of Ramsey algebra from
a global perspective to a local, sequential one. Specifically, the characterization
of Ramsey algebras can be reduced to the characterization of Ramsey orderly
algebras.

This paper presents preliminary findings to justify the pertinence of this
notion for the study of Ramsey algebras. The authors believe that approaching
the subject of Ramsey algebras through orderly algebras might be better suited
for further studies of the subject. Besides that, the paper aims to disseminate
the subject of Ramsey algebras to the combinatorial and logical community
to encourage participation in the study of this subject, which is at its infancy
stage. One open problem in the subject is the characterization of Ramsey
algebras in terms of the property of the underlying operations. At this point
of time, little is known about which common algebras, apart from semigroups,
are Ramsey.

2 Preliminary

The set of natural numbers and the set of positive integers are denoted by ω
and N respectively. The set of infinite sequences in A is denoted by ωA. The
cardinality of a set A is denoted by |A|.

To us an algebra is a pair (A,F), where A is a nonempty set and F is a
collection of operations on A, none of which is nullary. We will write (A, {f})
simply as (A, f).

We assume the reader is familiar with the syntax and semantics of first order
logic. In particular, we are only concerned with purely functional first-order
logic L, that is, logic whose non-logical symbols are functional. Fix a list of
(syntactic) variables, v0, v1, v2, . . . . The index of vi is i. The terms of such a
language are expressions built up in the usual way from the variables and the
function symbols. An L-algebra is an L-structure in the usual sense.

Suppose that A is an L-algebra. An assignment is (identified with) an
infinite sequence whose terms are elements of the universe ‖A‖ of A. The
interpretation of a term t under A and assignment �a, denoted tA[�a], is defined
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inductively in the usual way.
For each algebra A = (A,F), there is a natural language associated to it.

Let LF denote the language { f | f ∈ F } where f and f have the same arity
for every f ∈ F and f and g are distinct whenever f and g are distinct. We
will identify A with the LF -algebra whose universe is A and the interpretation
of f is f for every f ∈ F .

To discuss Ramsey algebras or Ramsey orderly algebras, the notion of a
“term” is inadequate. We need a stronger notion.

Definition 2.1. Suppose that L is a language. An orderly term of L is a term
of L such that the indices of the variables appearing in it from left to right
is strictly increasing. The set of orderly terms of L is denoted by OT(L). If
t, t′ ∈ OT(L), then t < t′ means that the index of the last variable in t is less
than the index of the first variable in t′. An infinite sequence �t of orderly terms
of L is admissible iff it is increasing with respect to <. The set of admissible
sequences of L is denoted by Adm(L).

Definition 2.2. Suppose that A = (A,F) is an algebra and �a,�b ∈ ωA. We say
that �b is a reduction of �a (with respect to F), denoted �b ≤F �a, iff there exists
�t ∈ Adm(LF ) such that �b(i) = (�t(i))A[�a] for all i ∈ ω.

The relation ≤F is reflexive and transitive.

Definition 2.3. Suppose that A = (A,F) is an L-algebra and �a ∈ ωA. The
set of finite reductions of �a (with respect to F), denoted FRF (�a), is defined by

FRF (�a) = { tA[�a] | t ∈ OT(L) }.
Definition 2.4. Suppose (A,F) is an algebra. We say that (A,F) is Ramsey
iff for every �a ∈ ωA and X ⊆ A, there exists �b ≤F �a such that FRF (�b) is either
contained in or disjoint from X.

If for every �a ∈ ωA, there exists �b ≤F �a such that |FRF (�b)| = 1, then (A,F)
is trivially Ramsey, and we say that it is a degenerate Ramsey algebra.

The following localized version of Ramsey algebra is very relevant to this
work.

Definition 2.5. Suppose (A,F) is an algebra and �a ∈ ωA. We say that (A,F)
is Ramsey below �a iff for every �b ≤F �a and X ⊆ A, there exists �c ≤F �b such
that FRF (�c) is either contained in or disjoint from X.

Remark 2.6. An algebra (A,F) is Ramsey if and only if it is Ramsey below �a
for every �a ∈ ωA. Additionally, if (A,F) is Ramsey below �a, then it is Ramsey
below �b whenever �b ≤F �a.

We now address the intimate connection between Ramsey algebras and
Ramsey spaces. The definition of a Ramsey space presented in our context
here mirrors that given in [1]. A Ramsey space is called a topological Ramsey
space in [15] and it has a slightly different axiomatization.
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Definition 2.7. A preorder with approximations is a pair R = (R,≤) such that
R is a nonempty set of infinite sequences and ≤ is a reflexive and transitive
relation on R. For n ∈ ω and �a ∈ R, define

[n,�a] = {�b ∈ R | �b ≤ �a and 〈�b(0), . . . ,�b(n − 1)〉 = 〈�a(0), . . . ,�a(n − 1)〉 }.

The natural topology on R is the topology generated by the sets [n,�a].

Definition 2.8. Suppose R = (R,≤) is a preorder with approximations. As-
sume X is a subset of R. We say that X is Ramsey iff for every n ∈ ω and
�a ∈ R, there exists �b ∈ [n,�a] such that [n,�b] is either contained in or disjoint
from X. Assuming the Axiom of Choice, R is a Ramsey space iff every sub-
set of R (endowed with the natural topology) having the property of Baire is
Ramsey.

Our work concerns preorders with approximations associated to algebras.

Definition 2.9. Suppose (A,F) is an algebra and �a ∈ ωA. Define R(A,F) to
be the preorder with approximations (ωA,≤F ) and R�a(A,F) to be the preorder
with approximations ({�b ∈ ωA | �b ≤F �a },≤F).

Theorem 2.10. Suppose F is a finite collection of operations on a set A, none
of which is unary, and �a ∈ ωA. Then

1. R(A,F) is a Ramsey space if and only if (A,F) is a Ramsey algebra;

2. R�a(A,F) is a Ramsey space if and only if (A,F) is Ramsey below �a.

Theorem 2.10(1) is a version of Lemma 4.14 in [1] using the notion of Ram-
sey algebra. In fact, R(A,F) was shown in [1] to satisfy the assumptions for
the abstract version of Ellentuck’s Theorem that play a key role. As Theo-
rem 2.10(2) can be proved analogously, it is first stated in [13] without proof.
Furthermore, Theorem 2.10(1) is strengthen in [13] to allow for the collection
of operations to be appended by any collection of unary operations. As of this
writing, the author claims that the same conclusion holds provided the under-
lying set of the algebra is countable. However, it remains unclear whether there
exists a Ramsey algebra such that the corresponding space is not Ramsey.

Example 2.11. The empty algebra (ω, ∅) is Ramsey precisely due to the pi-
geonhole principle. Hence, R(ω, ∅) is a Ramsey space. Identifying infinite
subsets A and B of ω with strictly increasing sequences of natural numbers,
we have A ⊆ B if and only if A ≤∅ B. Therefore, the Ellentuck space is
actually isomorphic to the subspace of R(ω, ∅) induced by the set {A ∈ ωω |
A is strictly inceasing }. This set is the basic open set [0, 〈0, 1, 2, . . .〉] in the
natural topology on R(ω, ∅) and as such induces a Ramsey subspace.

Example 2.12. Suppose L is a finite alphabet and v is a distinct variable not
contained in L. A variable word over L is a finite sequence w of elements of
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L ∪ {v} such that the variable v occurs at least once in w. Denote the set of
variable words over L by W . If w ∈ W and a ∈ L, then w(a) is the result of
replacing every occurrence of v in w by a. The concatenation of two variable
words w and w′ is denoted by w ∗ w′. Let F consist of ∗ and the following
binary operations on W :

(w, w′) �→ w ∗ w′(a) , a ∈ L;

(w, w′) �→ w(a) ∗ w′ , a ∈ L.

R(W,F) is a prototype of Ramsey spaces of variable words [1].

Hindman’s Theorem [6] implies that (N, +) is a Ramsey algebra. In fact,
the generalization in the next theorem is essentially due to Hindman’s Theorem
(see [7, Section 5.2]). Alternatively, it follows from the fact that the preorder
with approximations associated to a semigroup is a Ramsey space (Theorem 6
in [1]).

Theorem 2.13. Every semigroup is a Ramsey algebra.

Remark 2.14. Structures that satisfy the Moufang identities are very close
to being semigroups. For example, under octonion multiplication, the nonzero
octonions form a Moufang loop that is nonassociative. Nevertheless, this Mo-
ufang loop is not a Ramsey algebra (see [9]).

If R(A,F) is a Ramsey space, then (A,F) is trivially a Ramsey algebra
because every subset of A induces a subset of ωA that is clopen in the natural
topology. In fact, the strength of being a Ramsey space bestows more Ram-
sey type property on the associated algebra, which is the reason behind the
following analogue of the Milliken-Taylor Theorem [8, 10].

Theorem 2.15. Suppose F is a finite collection of operations on a set A, none
of which is unary, �a ∈ ωA, and n ∈ ω. If A = (A,F) is Ramsey below �a, then
for every �b ≤F �a and X ⊆ An, there exists �c ≤F �b such that [FRF (�c)]n< is
either contained in or disjoint from X, where

[FRF (�c)]n< = { (tA1 [�c], . . . , tAn [�c]) | t1, . . . , tn ∈ OT(LF) with t1 < · · · < tn }.

Proof. Let R = {�b ∈ ωA | �b ≤F �a }. By Theorem 2.10, R�a(A,F) = (R,≤F ) is
a Ramsey space.

Fix �b ≤F �a and X ⊆ An. Let

Y = { �d ∈ R | (�d(0), �d(1), . . . , �d(n − 1)) ∈ X }.

Clearly, [n, �d] ⊆ Y for every �d ∈ Y . Hence, Y =
⋃

�d∈Y
[n, �d] is open in the

natural topology on R�a(A,F). Thus Y has the property of Baire and so is
Ramsey because R�a(A,F) is Ramsey. Therefore, we can choose �c ≤F �b such
that [0, �c] = { �d ∈ R | �d ≤F �c} is either contained in or disjoint from Y .
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Suppose (d0, d1, . . . , dn−1) ∈ [FRF (�c)]n< is arbitrary. By the definition of a
reduction, 〈d0, d1, . . . , dn−1〉 can be extended easily to some reduction �d of �c,
meaning �d ∈ [0, �c]. Note that �d ∈ Y if and only if (d0, d1, . . . , dn−1) ∈ X. It
follows that [FRF (�c)]n< is either contained in or disjoint from X.

3 Orderly Algebras and Their Reductions

We now introduce the notion of orderly algebra. Its naturality and relevance
to the study of Ramsey algebras will become clear by the time we reach The-
orem 4.4.

Definition 3.1. Suppose L is a language. An orderly L-algebra is a function
A with domain OT(L) such that for each f ∈ L the following holds: if f is
n-ary, then A(ft1t2 · · · tn) = A(ft′1t′2 · · · t′n) whenever t1, t2, . . . , tn, t′1, t′2, . . . , t′n
are orderly terms of L with t1 < t2 < · · · < tn and t′1 < t′2 < · · · < t′n such
that A(tk) = A(t′k) for 1 ≤ k ≤ n. The range of A, denoted ‖A‖, is called the
universe of A.

Example 3.2. Suppose L is a language. If A is any constant function with
domain OT(L), then A is what we call a trivial orderly L-algebra.

Example 3.3. Suppose L is a language. Let A(t) = {i ∈ ω | vi appears in t}
for all t ∈ OT(L). Then A is an orderly L-algebra.

Examples 3.2 and 3.3 are arbitrary in the sense that no particular algebra
has played a role in defining the values of A in either case. Since we are
interested in algebras, we would like to be able to obtain an orderly L-algebra
from a given algebra. This is what we do in the next definition.

Definition 3.4. Suppose L is a language, A is an L-algebra and �a ∈ ω‖A‖.
The orderly L-algebra induced from A by �a, denoted A�a, is defined by

A�a(t) = tA[�a] for all t ∈ OT(L).

The fact that A�a is well-defined follows from the semantics of first order
logic, namely (ft1t2 · · · tn)A[�a] = fA(tA1 [�a], . . . , tAn [�a]) whenever f ∈ L, say n-
ary, and t1, . . . , tn are terms of L.

Note that if A = (A,F) is an L-algebra and �a ∈ ωA, then ‖A�a‖ = FRF (�a).

Example 3.5. Suppose L = {f}, where f is binary. An orderly L-algebra A is
an orderly semigroup iff A(fft1t2t3) = A(ft1ft2t3) for every t1, t2, t3 ∈ OT(L)
with t1 < t2 < t3. If A is an orderly semigroup, then in fact A(s) = A(t)
whenever the same variables occur in s and t (essentially Lemma 4.2 in [12]).
Every orderly L-algebra induced from a semigroup is an orderly semigroup.

It will be shown now that, conversely, every orderly L-algebra is induced
from some L-algebra.
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Suppose that L is a language and A is an orderly L-algebra. For each fixed
f ∈ L, say f is n-ary, the map

(A(t1), . . . , A(tn)) �→ A(ft1 · · · tn) , t1 < t2 < · · · < tn

is a well-defined n-ary partial operation on ‖A‖. Extend this map arbitrarily
to an n-ary operation on ‖A‖, denoted by f∗.

Let A = (‖A‖, {f∗}f∈L) and �a = 〈A(v0), A(v1), A(v2), · · · 〉. Then A is
canonically an L-algebra with fA = f∗ for each f ∈ L. We claim that A�a = A.
To see this, we argue by induction on the complexity of orderly terms that
A�a(t) = A(t) for all t ∈ OT(L). For each variable vi, we have A�a(vi) = vA

i [�a] =
�a(i) = A(vi). Now, assume t = ft1t2 · · · tn for some n-ary f ∈ L and orderly
terms t1 < t2 < · · · < tn. By the induction hypothesis, A�a(ti) = tAi [�a] = A(ti)
for each 1 ≤ i ≤ n. By definition, A�a(t) = tA[�a] = fA(tA1 [�a], tA2 [�a], . . . , tAn [�a]) =
f∗(A(t1), A(t2), . . . , A(tn)) = A(ft1t2 · · · tn) = A(t). Hence, we have proved
the following theorem.

Theorem 3.6. Suppose that L is a language and A is an orderly L-algebra.
Then there exists an L-algebra A with universe ‖A‖ such that A is induced
from A.

Definition 3.7. Suppose L is a language, s ∈ OT(L), and �t ∈ Adm(L). Define
s[�t] to be the orderly term of L obtained by replacing each variable vi occurring
in s by �t(i).

Definition 3.8. Suppose L is a language and suppose A and B are orderly
L-algebras. We say that B is a reduction of A iff there exists �t ∈ Adm(L) such
that for every s ∈ OT(L),

B(s) = A(s[�t]).

We say that B is a reduction of A witnessed by �t.

Remark 3.9. 1. If B is a reduction of A, then ‖B‖ ⊆ ‖A‖.

2. If B is a reduction of A and C is a reduction of B, then C is a reduction
of A.

The choice of the term “reduction” is justified by the following proposition.

Proposition 3.10. Suppose L is a language, A = (A,F) is an L-algebra, and
�a ∈ ωA. Then

1. �b ≤F �a if and only if A�b is a reduction of A�a for each �b ∈ ωA;

2. if B is a reduction of A�a and �b(i) = B(vi) for all i ∈ ω, then �b is a
reduction of �a and B = A�b

.
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Proof. For the first part, fix �b ∈ ωA. Assume �b ≤F �a. Then choose �t ∈
Adm(LF) such that �b(i) = (�t(i))A[�a] for all i ∈ ω. For every s ∈ OT(LF ), by
the substitution lemma, A�b(s) = sA[�b] = (s[�t])A[�a] = A�a(s[�t]). Thus A�b is a
reduction of A�a witnessed by �t. Conversely, assume A�b is a reduction of A�a

witnessed by some �t ∈ Adm(LF ). Then �b(i) = vA
i [�b] = A�b(vi) = A�a(�t(i)) =

(�t(i))A[�a] for all i ∈ ω. Therefore, �b is a reduction of �a.
For the second part, suppose B is a reduction of A�a witnessed by some

�t ∈ Adm(LF ) and �b(i) = B(vi) for all i ∈ ω. Then �b(i) = A�a(�t(i)) = (�t(i))A[�a]
for all i ∈ ω, implying that �b is a reduction of �a. Now, for every s ∈ OT(LF),
B(s) = A�a(s[�t]) = (s[�t])A[�a] = sA[�b] = A�b(s). Therefore, B = A�b.

Corollary 3.11. Suppose L is a language and A is an orderly L-algebra. If B
and C are reductions of A such that B(vi) = C(vi) for all i ∈ ω, then B = C.

Proof. By Theorem 3.6, A = A�a for some L-algebra A and sequence �a ∈ ω‖A‖.
The conclusion then follows by Proposition 3.10(2).

The corollary states that the reduction of any given orderly L-algebra is
uniquely determined by its values on the variables.

4 Ramsey Orderly Algebras

This section is devoted to the connection between orderly L-algebras and Ram-
sey algebras. Theorem 4.4 is the main result concerning the connection.

Definition 4.1. Suppose L is a language and A is an orderly L-algebra. We
say that A is weakly Ramsey iff for every X ⊆ ‖A‖, there exists a reduction B
of A homogeneous for X in the sense that ‖B‖ is either contained in or disjoint
from X. We say that A is Ramsey iff for every reduction B of A and X ⊆ ‖A‖,
there exists a reduction C of B homogeneous for X.

Remark 4.2. 1. If A is Ramsey, then it is weakly Ramsey.

2. If some reduction of A is weakly Ramsey, then A is weakly Ramsey.

3. If A is Ramsey, then every reduction of A is Ramsey.

Proposition 4.3. Suppose that A = (A,F) is an L-algebra and �a ∈ ωA. Then
A�a is a Ramsey orderly L-algebra if and only if A is Ramsey below �a.

Proof. Proposition 3.10 will be applied repeatedly. Assume A�a is Ramsey.
Suppose �b ≤F �a and X ⊆ A. Then A�b is a reduction of A�a. Choose a reduction
C of A�b homogeneous for X ∩ ‖A�a‖. We must have C = A�c for some �c ≤F �b.
By Remark 3.9, ‖C‖ ⊆ ‖A�a‖. Together with ‖C‖ = FRF(�c), it follows that
FRF (�c) is either contained in or disjoint from X. Therefore, A is Ramsey below
�a.
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Conversely, assume A is Ramsey below �a. Suppose X ⊆ ‖A�a‖ and B is
a reduction of A�a, say B = A�b

for some �b ≤F �a. Choose �c ≤F �b such that
FRF (�c) is either contained in or disjoint from X. Then A�c is a reduction of B
homogeneous for X because ‖A�c‖ = FRF(�c).

Theorem 4.4. Suppose that A = (A,F) is an L-algebra. The following are
equivalent.

1. A is a Ramsey algebra.

2. A�a is a Ramsey orderly L-algebra for all �a ∈ ωA.

3. A�a is a weakly Ramsey orderly L-algebra for all �a ∈ ωA.

Proof. The equivalence of (1) and (2) follows from Remark 2.6 and Theo-
rem 4.3 while (2) immediately implies (3). Assume (3) holds. Fix �a ∈ ωA.
Suppose X ⊆ ‖A�a‖ and B is a reduction of A�a. By Proposition 3.10(2) and
our assumption, B is weakly Ramsey. Choose a reduction C of B homogeneous
for X ∩ ‖B‖. This C is also homogeneous for X as required.

For the rest of this section, we present an assorted array of elementary
results. We begin with showing that if an orderly L-algebra is a one-to-one
function, then it cannot be Ramsey.

Theorem 4.5. Suppose that L is a nonempty language and A is an orderly
L-algebra. If A is one-to-one, then it is not weakly Ramsey and thus not Ram-
sey.

Proof. We define a subset X of ‖A‖ as follows. Fix a function symbol f ∈ L
and say f is n-ary. For every t ∈ OT(L), let A(t) ∈ X iff the number of f
occurring before the first variable in t is even. Since A is one-to-one, the set X is
well-defined. Suppose B is any reduction of A, say witnessed by 〈t0, t1, t2, . . .〉.
By definition, B(v0) = A(t0) and B(fv0v1 · · ·vn) = A(ft0t1 · · · tn). Obviously,
A(t0) ∈ X if and only if A(ft0t1 · · · tn) /∈ X. Hence, B is not homogeneous for
X. Therefore, A is not weakly Ramsey.

Corollary 4.6. If f is a one-to-one binary operation on an infinite set A, then
(A, f) is not a Ramsey algebra.

Sketch of proof. Through careful analysis, a sequence �a such that the induced
orderly algebra A�a is one-to-one can be constructed inductively. Hence, by
Theorems 4.4 and 4.5, (A, f) is not a Ramsey algebra.

Theorem 4.7. Suppose that L is a language and A is an orderly L-algebra with
a finite universe. Then A is weakly Ramsey if and only if A has a reduction
that is a trivial orderly L-algebra.
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Proof. The backward direction is immediate. Now, suppose A is weakly Ram-
sey. Assume A has no reduction that is trivial. For this proof, let us say that
a reduction B of A is minimal iff no reduction of B has a universe with smaller
cardinality.

Claim. Suppose B is a minimal reduction of A and b ∈ ‖B‖. Then there exists
a reduction C of B such that C(vi) = b for every i ∈ ω.

Proof of claim. Such C exists if there are orderly terms t0 < t1 < t2 < · · · such
that B(ti) = b for all i ∈ ω. It suffices to show that for every natural number n,
there exists t ∈ OT(L) such that B(t) = b and the index of the first variable of
t is greater than n. Assume this is not the case. Then the first variable of any
t ∈ OT(L) such that B(t) = b is bounded, say by N . Let C be the reduction of
B witnessed by vN+1 < vN+2 < vN+3 < · · · . Clearly, b /∈ ‖C‖ and hence ‖C‖
is a proper subset of ‖B‖, contradicting the minimality of B.

Claim. If B and C are minimal reductions of A, then ‖B‖ and ‖C‖ are either
equal or disjoint.

Proof of claim. We argue by contradiction. Assume b ∈ ‖B‖ ∩ ‖C‖. Then by
the previous claim, there is a reduction D of B such that D(vi) = b for all i ∈ ω.
Likewise, there is a reduction E of C such that E(vi) = b for all i ∈ ω. Since
D and E are both reductions of A, by Corollary 3.11, D = E. It follows that
‖B‖ = ‖D‖ = ‖E‖ = ‖C‖.

By the assumption, the universe of any minimal reduction of A has size
at least two. Let X consist of exactly one representative from the universe of
each minimal reduction of A such that if two minimal reductions have the same
universe, they share the same representative. By our claim, ‖A‖\X contains at
least some element from the universe of each minimal reduction of A. Since A
is weakly Ramsey, choose a reduction B of A homogeneous for X. Such B can
be further required to be a minimal reduction of A. However, this contradicts
our choice of X.

The following corollary of Theorem 4.7 has a direct proof in [13].

Corollary 4.8. Every finite Ramsey algebra is a degenerate Ramsey algebra.

The next theorem is a reformulation of Corollary 4.9 in [12] into the context
of orderly algebra. The proof of the nontrivial backward direction is a minor
modification of the proof of Theorem 4.8 in [12] and is thus omitted.

Theorem 4.9. Suppose L is a language that contains some binary function
symbol and A is an orderly L-algebra. Then A is weakly Ramsey if and only if
for every X ⊆ ‖A‖, there exists a reduction B of A pre-homogeneous for X, in
the sense that for every t1, t2 ∈ OT(L) such that the same variables appear in
both orderly terms, B(t1) ∈ X if and only if B(t2) ∈ X.
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Remark 4.10. The assumption that L contains some binary function symbol
is necessary. Otherwise, let A = (N, +3), where +3(x, y, z) = x + y + z for all
x, y, z ∈ N. If �a is any infinite sequence of odd numbers, for example, then A�a

is not weakly Ramsey although A�a is trivially pre-homogeneous for any subset
of ‖A�a‖.
Corollary 4.11. Every orderly semigroup is Ramsey.

Finally, we present the analogue of Theorem 2.15 for orderly algebras.

Theorem 4.12. Suppose L is a finite language without unary function symbol
and A is an orderly L-algebra. If A is Ramsey, then for every reduction B of
A, n ∈ ω, and X ⊆ ‖A‖n, there exists a reduction C of B such that ‖C‖n

< is
either contained in or disjoint from X, where

‖C‖n
< = { (C(t1), . . . , C(tn)) | t1, . . . , tn ∈ OT(L) with t1 < · · · < tn }.

Proof. Suppose B is a reduction of A, n ∈ ω, and X ⊆ ‖A‖n. By Theorem 3.6,
A = A�a for some L-algebra A = (‖A‖,F) and �a ∈ ω‖A‖. Hence, by Proposi-
tion 3.10, B = A�b for some �b ≤F �a. Since A is Ramsey, by Theorem 4.3, A is
Ramsey below �a. By Theorem 2.15, there exists �c ≤F �b such that [FRF(�c)]n<
is either contained in or disjoint from X. Then A�c is a reduction of B and it
remains to note that ‖A�c‖n

< = [FRF (�c)]n<.

5 A Case Study

In addition to applying the notion of orderly L-algebras to the study of Ramsey
algebras, the case study in this section is intended to demonstrate how the
notion in question facilitates the study of Ramsey algebra.

Throughout this section, suppose L = {f}, where f is binary, and fix an
orderly L-algebra A. We will define an orderly L-algebra, denoted �A, with
universe a subset of ‖A‖ × ‖A‖ and show that �A is Ramsey provided that A
is Ramsey. To do this, every orderly term t of L is associated with a pair of
(orderly) terms of L, denoted (tx, ty), defined inductively in the following way:

(vx
i , vy

i ) = (v2i, v2i+1) for all i ∈ ω;

((fst)x , (fst)y) = (fsxsy, ftxty) for all s, t ∈ OT(L) with s < t.

Claim. tx, ty ∈ OT(L) and tx < ty for every t ∈ OT(L).

Proof. In fact, vi occurs in t if and only if each of v2i and v2i+1 occurs in either
tx or ty. It is straightforward to prove this stronger claim by induction on the
complexity of orderly terms.

Now, for every t ∈ OT(L), define �A(t) = (A(tx), A(ty)).
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Claim. �A is an orderly L-algebra and ‖�A‖ ⊆ ‖A‖2
<.

Proof. Suppose s1 < t1, s2 < t2, �A(s1) = �A(s2), and �A(t1) = �A(t2). We
need to show that �A(fs1t1) = �A(fs2t2). From �A(s1) = �A(s2), it fol-
lows that A(sx

1 ) = A(sx
2 ) and A(sy

1) = A(sy
2). Since A is an orderly L-algebra,

A(fsx
1sy

1) = A(fsx
2 sy

2). Similarly, A(ftx1ty1) = A(ftx2 ty2). Therefore, �A(fs1t1) =
(A(fsx

1sy
1), A(ftx1ty1)) = (A(fsx

2 sy
2), A(ftx2 ty2)) = �A(fs2t2) as required. The

second part is immediate.

Claim. Suppose B is a reduction of �A witnessed by �t = 〈t0, t1, t2, . . . 〉. Let
C be the reduction of A witnessed by �t′ = 〈ftx0 ty0 , ftx1ty1 , ftx2ty2 , . . . 〉. If D is a
reduction of C,1 then �D is a reduction of B.

Proof. First of all, the following substitution property can be proved by induc-
tion on the complexity of orderly terms:

s[�t′] = f(s[�t])x(s[�t])y for all s ∈ OT(L).

For the base step, vi[�t′] = ftxi tyi = f(vi[�t])x(vi[�t])y. For the induction step,

(fss′)[�t′] = fs[�t′]s′[�t′] = ff(s[�t])x(s[�t])yf(s′[�t])x(s′[�t])y =

f
(
fs[�t]s′[�t]

)x(
fs[�t]s′[�t]

)y = f
(
(fss′)[�t]

)x(
(fss′)[�t]

)y
.

Suppose D is a reduction of C witnessed by �u = 〈u0, u1, u2, . . . 〉. Let �u′ =
〈fu0u1, fu2u3, fu4u5, . . .〉. Again, it can be proved similarly by induction on
the complexity of orderly terms that

s[�u′] = (fsxsy)[�u] for all s ∈ OT(L).

Now, we will show that �D is a reduction of B witnessed by �u′. Fix s ∈
OT(L). Then by definition,

�D(s) = (D(sx), D(sy)) = (C(sx[�u]), C(sy[�u])) = (A(sx[�u][�t′]), A(sy[�u][�t′])).

By the first substitution property,

sx[�u][�t′] = f(sx[�u][�t])x(sx[�u][�t])y =
(
f(sx[�u][�t])(sy[�u][�t])

)x =
(
(fsxsy)[�u][�t]

)x
.

Similarly, sy[�u][�t′] =
(
(fsxsy)[�u][�t]

)y. Therefore, �D(s) = �A
(
(fsxsy)[�u][�t]

)
=

B
(
(fsxsy)[�u]

)
= B(s[�u′]) as required.

Theorem 5.1. If A is Ramsey, then �A is Ramsey.

1This requirement on D is essential. For example, say B = �A. If D is a reduction of A
witnessed by v0 < v2 < v4 < · · · , then �D need not be a reduction of B.
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Proof. Suppose B is a reduction of �A witnessed by �t = 〈t0, t1, t2, . . . 〉 and X ⊆
‖�A‖. Let C be the reduction of A witnessed by �t′ = 〈ftx0 ty0 , ftx1ty1 , ftx2ty2 , . . .〉.
Since A is Ramsey and X ⊆ ‖A‖2, by Theorem 4.12, choose a reduction D
of C such that ‖D‖2

< is either contained in disjoint from X. By the previous
claim, �D is a reduction of B. Finally, since ‖�D‖ ⊆ ‖D‖2

<, it follows that �D is
homogeneous for X.

Theorem 5.2. Suppose g is a binary operation on a set A and h is an operation
on A2 defined by

h((x1, y1), (x2, y2)) = (g(x1, y1), g(x2, y2)).

If (A, g) is a Ramsey algebra, then (A2, h) is also a Ramsey algebra.

Proof. Let A and B denote the L-algebras (A, g) and (A2, h) respectively. Sup-
pose �b = 〈(xi, yi)〉i∈ω ∈ ω(A2). Let �a = 〈x0, y0, x1, y1, x2, y2, . . . 〉. By Theo-
rems 4.4 and 5.1, it suffices to show that B�b

= �A�a. We prove this by induction
on the complexity of orderly terms. For the base case, B�b(vi) = (xi, yi) =
(A�a(v2i), A�a(v2i+1)) = �A�a(vi). For the induction step, consider fst ∈ OT(L).
By the induction hypothesis, sB[�b] = B�b[s] = �A�a(s) =

(
A�a(sx), A�a(sy)

)
=(

(sx)A[�a], (sy)A[�a]
)
. Similarly, we have tB[�b] =

(
(tx)A[�a], (ty)A[�a]

)
. Therefore,

B�b(fst) = fB(sB [�b], tB[�b]) = h
((

(sx)A[�a], (sy)A[�a]
)
,
(
(tx)A[�a], (ty)A[�a]

) )
. By

the definition of h, this equals
(

g
(
(sx)A[�a], (sy)A[�a]

)
, g

(
(sx)A[�a], (sy)A[�a]

) )
=(

(fsxsy)A[�a], (ftxty)A[�a]
)

= (A�a(fsxsy), A�a(ftxty)) = �A�a(fst).

Corollary 5.3. There exists a Ramsey algebra (A, f) where f is a nowhere
associative binary operation, meaning f(f(a, b), c) �= f(a, f(b, c)) for every
(a, b, c) ∈ A3.

Proof. Let g((x1, y1), (x2, y2)) = (x1 +y1, x2 +y2) for all (x1, y1), (x2, y2) ∈ N
2.

It is easy to verify that g is nowhere associative. Since (N, +) is a Ramsey
algebra for being a semigroup, by Theorem 5.2, (N2, g) is a Ramsey algebra.

The results in this section can be extended analogously to the n-ary case.

6 Concluding Remarks

The paper begins with a brief historical account of the subject, followed by a
formal introduction to the notion of a Ramsey algebra and its connection with
Ramsey spaces.

In an attempt to facilitate the study of the characterization of Ramsey
algebras, we have introduced the notion of an orderly L-algebra based on the
observation that whether or not an algebra is a Ramsey algebra can be cast in
terms of infinite sequences in the underlying set of the algebra. This observation
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culminates in the notion of an orderly semigroup, an orderly algebra every
semigroup would induce. Such a sufficient condition for an orderly algebra to
be Ramsey is contrasted with the fact that even algebras closely resembling
semigroups can fail to be Ramsey (cf. [9]), further suggesting that the crucial
aspect that determines if an algebra is Ramsey lies in sequences and their
reduction properties.

We ended our paper with a case study to demonstrate the facility afforded
by orderly algebras in the study of Ramsey algebra. We conclude the paper with
an invitation to the readers to pursue the study of Ramsey algebras towards
a their characterization, particularly to apply the notion of Ramsey orderly
algebras in such a study.
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