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Abstract

In [4], complex rings C(R;−1), quaternion rings H(R;−1,−1) and
octonion rings O(R;−1,−1) are studied for any ring R. For the real num-
bers R, C(R;−1) is the complex numbers, H(R;−1,−1) is the Hamilton’s
quaternions and O(R;−1,−1) is the Cayley-Graves’s octonions. In view
of progress of the quaternions, generalized quaternion algebras

(
a,b
F

)
are

introduced for commutative fields F and nonzero elements a, b ∈ F , and
these quaternion algebras have been extensively studied as number theory.
In this paper, we use H(F ;a, b) instead of

(
a,b
F

)
.

For a division ring D and nonzero elements a, b in the center of D, we
introduce generalized complex rings C(D;a) and generalized quaternion
rings H(D;a, b), and study the structure of these rings. We show that,
if 2 �= 0, that is, the characteristic of D is not 2, then H(D;a, b) is a
simple ring and C(D; a) is a simple ring or a direct sum of two simple
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rings. Main purpose of this paper is to study structures of these simple
rings. We also study the case of 2 = 0.

1 Introduction

In the middle of the 19th century, Hamilton discovered the quaternions, and
Cayley and Graves independently discovered the octonions. These numbers
are defined over the real numbers and contain the complex numbers. Through
Frobenius, Wedderburn and many mathematicians, these numbers have been
extensively studied. In particular, Frobenius showed that, up to isomorphism,
the finite dimensional non-commutative division algebra over R is only Hamil-
ton’s quaternion algebra, and Wedderburn showed that finite division rings are
commutative fields. We may say that one of roots of ring and representation
theory began with these numbers.

Complex numbers, quaternion numbers and octonion numbers are naturally
defined for any ring R. Let us begin to state this situation. Consider free right
R-modules:

C(R) = e0R ⊕ e1R,

H(R) = e0R ⊕ e1R ⊕ e2R ⊕ e3R,

O(R) = e0R ⊕ e1R ⊕ · · · ⊕ e7R.

We define rei = eir for any r ∈ R and any i (0 ≤ i ≤ 7), and multiplications
for {ei}i are defined by the following Cayley-Graves multiplication table:

× e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7

e1 e1 -e0 e3 -e2 e5 -e4 -e7 e6

e2 e2 -e3 -e0 e1 e6 e7 -e4 -e5

e3 e3 e2 -e1 -e0 e7 -e6 e5 -e4

e4 e4 -e5 -e6 -e7 -e0 e1 e2 e3

e5 e5 e4 -e7 e6 -e1 -e0 -e3 e2

e6 e6 e7 e4 -e5 -e2 e3 -e0 -e1

e7 e7 -e6 e5 e4 -e3 -e2 e1 -e0

Then the modules C(R) and H(R) become rings, and O(R) becomes a non-
associative ring. As rings, we denote these modules by C(R;−1), H(R;−1,−1)
and O(R;−1,−1), and call the complex ring, quaternion ring and octonion ring,
respectively. For C(R;−1) and H(R;−1,−1), we put 1 = e0, i = e1, j =
e2, k = e3. Then multiplications for {i, j, k} are usual forms:

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.
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In order to study H(H(R;−1,−1);−1,−1), we use {i, j, k} instead of {i, j, k}.
Namely,

H(R;−1,−1) = R ⊕ iR ⊕ jR ⊕ kR,

H(H(R;−1,−1);−1,−1) = H(R;−1,−1)⊕ iH(R;−1,−1)⊕ jH(R;−1,−1)
⊕ kH(R;−1,−1).

Similarly, for C(H(R;−1,−1);−1), C(C(R;−1);−1), H(C(R;−1);−1,−1),
we use {i, j, k}.

In the progress of the quaternion algebras, generalized quaternion algebras
are introduced for commutative fields F . In this paper, we introduce generalized
quaternion rings for any ring.

Let R be a ring and let a, b be non-zero elements in the center of R. Consider
again free right R-modules C(R) and H(R) above.

For these modules, we define multiplications depending on a, b. For any
r ∈ R, we define

ri = ir, rj = jr, rk = kr

and define multiplications for {i, j, k} as follows:

i2 = a, j2 = b, ij = −ji = k.

Assuming associativity, we can see the following

k2 = −ab, ik = −ki = ja, jk = −kj = −ib.

The following is the multiplication table:

× 1 i j k
1 1 i j k
i i a k ja
j j −k b −ib
k k −ja ib −ab

By these multiplications, the modules C(R) and H(R) become rings. We
denote these rings by C(R; a) and H(R; a, b), and call the generalized complex
ring and generalized quaternion ring, respectively.

For a commutative field F , H(F ; a, b) is usually denoted by
(

a,b
F

)
and has

been studied as number theory (see [6], [7], [9]).
Now, our purpose of the present paper is to study C(D; a) and H(D; a, b) for

division rings D and state consistency between our theory and classical theory.
Now, let R be a ring. We denote its Jacobson radical, right socle and left so-

cle by J(R), S(RR) and S(RR), respectively. When S(RR) = S(RR), we simply
denote it by S(R). Z(R) denotes the center of R, and Mn(R) denotes the n×n
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matrix ring over R. For a semiperfect ring R, P i(R) denotes a complete set of
orthogonal primitive idempotents. Its cardinal number is uniquely determined
and is denoted by |P i(R)|. Furthermore we use the following symbols:

R the real numbers
Q the rational numbers
C the complex numbers
ch(R) the characteristic of a ring R
F commutative field
D division ring√

a square root of a ∈ D, i.e.
√

a in D and (
√

a)2 = a

2 Structure of H(D;−1,−1)

Recently, Lee-Oshiro [4] showed the following results.

Theorem A. If R is a Frobenius algebra, then C(R;−1), H(R;−1,−1) and
O(R;−1,−1) are Frobenius algebras.

Theorem B. If R is a quasi-Frobenius ring, then C(R;−1) and H(R;−1,−1)
are quasi-Frobenius rings. In the case 2 = 0, that is, ch(R) = 2, O(R;−1,−1)
is also a quasi-Frobenius ring.

It follows from Theorem B that, for a division ring D, C(D;−1) and
H(D;−1,−1) are quasi-Frobenius rings. Our motivation of this paper is to
study these quasi-Frobenius rings.

Let R be a ring. In order to study the structure of C(R;−1) and H(R;−1,−1),
we observe idempotents and nilpotents in these rings. For α = x+iy+jz+kw ∈
H(R;−1,−1) (x, y, z, w ∈ R), we write

α2 = A + iB + jC + kD

where A, B, C, D ∈ R. Then, by calculation, we see

A = x2 − y2 − z2 − w2, B = xy + yx + zw − wz,

C = xz + zx + wy − yw, D = wx + xw + yz − zy.

Therefore,

α2 = 0 ⇐⇒

(#)

⎧⎪⎪⎨
⎪⎪⎩

x2 − y2 − z2 − w2 = 0
xy + yx + zw − wz = 0
xz + zx + wy − yw = 0
wx + xw + yz − zy = 0.
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Further,

α2 = α ⇐⇒

(∗)

⎧⎪⎪⎨
⎪⎪⎩

x2 − y2 − z2 − w2 = x
xy + yx + zw − wz = y
xz + zx + wy − yw = z
wx + xw + yz − zy = w.

By (∗), we obtain

Fact 1. Let R = F be a commutative field with 2 	= 0. Then

α2 = α 	∈ {0, 1} ⇐⇒ x =
1
2

and
1
4

+ y2 + z2 + w2 = 0.

We first show the following theorem.

Theorem 1. Let D be a division ring with 2 	= 0. Then

(1) J(H(D;−1,−1)) = 0 and H(D;−1,−1) is a simple ring.

(2) |P i(H(D;−1,−1))| = 1, 2 or 4.

(3) |P i(H(D;−1− 1))| = 1 iff H(D;−1,−1) is a division ring.

(4) Let |P i(H(D;−1 − 1))| = 2. Then, for any primitive idempotent e ∈
H(D;−1,−1),

H(D;−1,−1) ∼= M2(eH(D;−1,−1)e).

(5) Let |P i(H(D;−1 − 1))| = 4. Then, for any primitive idempotent e ∈
H(D;−1,−1),

H(D;−1,−1) ∼= M4(eH(D;−1,−1)e).

In order to show J(H(D;−1,−1)) = 0, we show the following lemma.

Lemma 2. Let D be a division ring with 2 	= 0 and let α ∈ H(D;−1,−1). If
α2 = (αi)2 = (αj)2 = (αk)2 = 0, then α = 0.

Proof. Let α = x + iy + jz + kw ∈ H(D;−1,−1) (x, y, z, w ∈ D). By α2 = 0
and (#),

x2 − y2 − z2 − w2 = 0. (2.1)

Since αi = −y + ix + jw − kz and (αi)2 = 0,

y2 − x2 − w2 − z2 = 0. (2.2)



6 Complex rings and quaternion rings

Similarly, by (αj)2 = 0 and (αk)2 = 0,

z2 − w2 − x2 − y2 = 0, (2.3)

w2 − z2 − y2 − x2 = 0. (2.4)

By (2.2)+(2.3)+(2.4)−(2.1), we have x = 0. Similarly, we obtain y = z = w = 0
and hence α = 0, as required. �

Proof of Theorem 1 . (1) Suppose that J(H(D;−1,−1)) 	= 0. Since
H(D;−1,−1) is an artinian ring, there exists a non-zero simple right ideal
I ⊆ J(H(D;−1,−1)). Then, for any element α ∈ I, αJ(H(D;−1,−1)) = 0.
By Lemma 2, we have α = 0, a contradiction. Hence, J(H(D;−1,−1)) = 0.
Moreover, it is easily seen that Z(H(D;−1,−1)) ⊆ D and hence 0, 1 are the
only central idempotents in H(D;−1,−1). Therefore, H(D;−1,−1) is a simple
ring.

(2) Let |P i(H(D;−1,−1))| = n and

H(D;−1,−1) = e1H(D;−1,−1) ⊕ e2H(D;−1,−1) ⊕ · · · ⊕ enH(D;−1,−1)

where {e1, e2, . . . , en} is a complete set of orthogonal primitive idempotents.
Since H(D;−1,−1) is a simple artinian ring by (1), we have

esH(D;−1,−1)H(D;−1,−1)
∼= etH(D;−1,−1)H(D;−1,−1) (1 ≤ s, t ≤ n).

In particular, dimD esH(D;−1,−1)D = dimD e1H(D;−1,−1)D (2 ≤ s ≤ n).
Hence,

n · dimD e1H(D;−1,−1)D = dimD H(D;−1,−1)D = 4,

which implies n = 1, 2 or 4.
(3) By (1) it is obvious.
(4) Let e be a primitive idempotent of H(D;−1,−1) and let {e1 = e, e2}

be a complete set of orthogonal primitive idempotents of H(D;−1,−1). Then,
as in the proof of (2), e2H(D;−1,−1)H(D;−1,−1)

∼= eH(D;−1,−1)H(D;−1,−1).
Hence,

H(D;−1,−1) ∼= M2(eH(D;−1,−1)e).

(5) is similarly shown as in (4). �

The following is an example of |P i(H(D;−1,−1))| = 4.

Example 3. Consider the Hamilton’s quaternions

D := H(R;−1,−1) = R ⊕ iR ⊕ jR ⊕ kR,

and

H(D;−1,−1) = H(H(R;−1,−1);−1,−1) = D ⊕ iD ⊕ jD ⊕ kD.
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Then, |P i(H(D;−1,−1))| = 4. In fact, put

g1 =
1
4
(1 + ii + jj + kk), g2 =

1
4
(1 + ii − jj − kk),

g3 =
1
4
(1 − ii + jj − kk), g4 =

1
4
(1 − ii − jj + kk).

Then, it can be easily checked that {g1, g2, g3, g4} is a complete set of orthogonal
primitive idempotents and hence |P i(H(D;−1,−1))| = 4.

For |P i(H(D;−1,−1))| = 4, we show the following theorem.

Theorem 4. Let D be a division ring with 2 	= 0. The following conditions are
equivalent:

(i) |P i(H(D;−1,−1))| = 4.

(ii) There exist p, q ∈ D such that p2 = −1, q2 = −1 and pq = −qp.

Proof. (i) ⇒ (ii). Let |P i(H(D;−1,−1))| = 4 and {e1, e2, e3, e4} be a com-
plete set of orthogonal primitive idempotents of H(D;−1,−1). Noting that
dimD H(D;−1,−1)D = 4, we have e�H(D;−1,−1) = e�D (1 ≤ � ≤ 4). Hence,
there exist p, q ∈ D such that

e1i = e1p and e1j = e1q.

Then,
e1p

2 = (e1p)p = (e1i)p = e1(ip) = e1(pi) = e1ii = e1(−1).

Since p ∈ D and e1 	= 0, p2 = −1. In a similar way, we obtain q2 = −1.
Moreover, e1(pq) = e1iq = e1qi = e1ji = −e1ij = −e1pj = −e1jp = −e1qp =
e1(−qp) and so pq = −qp.

(ii) ⇒ (i). Assume that there exist p, q ∈ D such that p2 = −1, q2 = −1, pq =
−qp. Put

g1 =
1
4
(1 + ip + jq + kpq), g2 =

1
4
(1 + ip − jq − kpq),

g3 =
1
4
(1 − ip + jq − kpq), g4 =

1
4
(1 − ip − jq + kpq).

Then, we can check that {g1, g2, g3, g4} is a complete set of orthogonal primitive
idempotents of H(D;−1,−1). �

By Theorems 1 and 4, we obtain the following result.

Corollary 5. Let F be a commutative field with 2 	= 0. Then,

|P i(H(F ;−1,−1))| = 1 or 2.

Therefore, H(F ;−1,−1) is a division ring or H(F ;−1,−1) ∼=
(

F F
F F

)
.
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By Example 3 and Corollary 5, we can see different situations between the
structures of H(F ;−1,−1) and H(D;−1,−1).

Theorem 6. Let F be a commutative field with 2 	= 0. Assume that D =
H(F ;−1,−1) is a division ring. Then

H(D;−1,−1) ∼=

⎛
⎜⎜⎝

F F F F
F F F F
F F F F
F F F F

⎞
⎟⎟⎠ .

In particular,

H(H(R;−1,−1);−1,−1) ∼=

⎛
⎜⎜⎝

R R R R
R R R R
R R R R
R R R R

⎞
⎟⎟⎠ .

Proof. Let e be a primitive idempotent of H(D;−1,−1). Then, by Theorem 4,
|P i(H(D;−1,−1))| = 4. Hence, by Theorem 1,

H(D;−1,−1) ∼= M4(eH(D;−1,−1)e).

Since eH(D;−1,−1)e ⊇ eDe ⊇ eFe = eF , noting the dimensions of these rings
over F , we see eH(D;−1,−1)e = eF ∼= F as rings. Therefore the theorem
follows. �

Theorem 7. Let D be a division ring with 2 	= 0. Assume that there exists
x ∈ Z(D) such that x2 = −1, that is, x =

√−1 ∈ Z(D). Put e = (1 − ix)2−1

and f = (1 + ix)2−1. Then {e, f} is a complete set of orthogonal primitive
idempotents and

H(D;−1,−1) ∼=
(

D D
D D

)
.

Proof. Put S = {z ∈ D | z2 = −1}. Then, for any y ∈ S, (y + x)(y − x) =
y2 − x2 = 0. This implies that y = ±x ∈ Z(D) and S = {x,−x} ⊆ Z(D).
Hence, by Theorems 1 and 4, we can see that |P i(H(D;−1,−1))| ≤ 2 and e
and f are orthogonal primitive idempotents.

Let h = p + iq + jr + ks ∈ H(D;−1,−1) (p, q, r, s ∈ D). Then, ehe =
e(p + xq) ∈ eD. Hence, eH(D;−1,−1)e ⊆ eD. Since eD = eDe ⊂ eH(D)e,
we have eH(D;−1,−1)e = eD = De ∼= D. Therefore, by Theorem 1,

H(D;−1,−1) ∼=
(

eH(D;−1,−1)e eH(D;−1,−1)e
eH(D;−1,−1)e eH(D;−1,−1)e

)
∼=

(
D D
D D

)
.

�
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Corollary 8. Let D be a division ring with 2 	= 0. If C(D;−1) is a division
ring, then

H(C(D;−1);−1,−1) ∼=
(

C(D;−1) C(D;−1)
C(D;−1) C(D;−1)

)
.

Comparing to theorem 1, we characterize H(D;−1,−1) when D is a division
ring with 2 = 0.

Theorem 9. Let D be a division ring with 2 = 0. Then the following results
hold:

(1) |P i(H(D;−1,−1))| = 1.

(2) H(D;−1,−1) is a local quasi-Frobenius ring such that

J(H(D;−1,−1)) = (1 + i)H(D;−1,−1) + (1 + j)H(D;−1,−1) and
S(H(D;−1,−1)) = (1 + i + j + k)H(D;−1,−1).

Proof. (1) Let e = x + iy + jz + kw (x, y, z, w ∈ D) be an idempotent of
H(D;−1,−1). By using (∗) stated in §2, we can see that (x + y + z + w)2 =
x + y + z + w and hence x + y + z + w = 0 or x + y + z + w = 1. On the other
hand, by the first and second equations of (∗), we have

(x + y)2 + (z + w)2 = x + y. (2.5)

If x + y + z +w = 0, then x + y = z +w. Substituting this into (2.5), we obtain
x+y = 0. This implies that x = y and z = w. Hence, by (∗), x = y = z = w = 0
and e = 0. Let x + y + z + w = 1. Then, using the equation z + w = 1 + x + y,
in the same manner we can see that x + y = 1 and z = w. It follows from (∗)
that x = 1, y = z = w = 0. Therefore e = 1.

(2) By (1) and Theorem B, H(D;−1,−1) is a local quasi-Frobenius ring.
Further we see that J(H(D;−1,−1))=(1+i)H(D;−1,−1)+(1+j)H(D;−1,−1)
and S(H(D;−1,−1)) = (1 + i + j + k)H(D;−1,−1). �

3 Structure of C(D;−1)

By Theorem B, for a division ring D, C(D;−1) is a quasi-Frobenius ring and,
in case 2 	= 0, it is a semisimple ring.

We show the following theorem.

Theorem 10. For a division ring D, the following conditions are equivalent:

(i) x2 	= −1 for all x ∈ D.
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(ii) C(D;−1) is a division ring.

Proof. (i) ⇒ (ii). Assume (i). Then, from the assumption, we have 2 	= 0.
Suppose that C(D;−1) is not a division ring. Then there exist primitive idem-
potents e, f ∈ C(D;−1) such that C(D;−1) = eC(D;−1)⊕ fC(D;−1). Since
C(D;−1) is a 2-dimensional D-space, eC(D;−1) = eD, and hence there exists
x ∈ D such that ei = ex. Set e = a + ib (a, b ∈ D). Then, ei = −b + ia
and ex = ax + ibx. Hence −b = ax and a = bx, and it follows −1 = x2, a
contradiction.

(ii) ⇒ (i). Assume that C(D;−1) is a division ring. If 2 = 0, then (1+ i)2 =
0, and hence 1+i = 0, which is a contradiction. Hence 2 	= 0. Now, suppose that
there exists x ∈ D such that x2 = −1. Then e = (1 + ix)2−1 is an idempotent.
Since C(D;−1) is a division ring, e must be 0 or 1, a contradiction. �

Remark 11. (1) The implication (i) ⇒ (ii) is shown in [2] and Chapter 10 in
[1]. Its proof we state below is complicated but above proof is a ring theoretic
clear proof.

In fact, let x = α + iβ (α, β ∈ D) be a non-zero element of C(D;−1). If
β = 0, then x−1 = α−1. If β 	= 0, then

(α + iβ)(β−1α − i)β−1((αβ−1)2 + 1)−1 = 1,

((β−1α)2 + 1)−1(β−1α − i)β−1(α + iβ) = 1.

Hence x−1 = (β−1α − i)β−1((αβ−1)2 + 1)−1.
(2) Let S := {x ∈ D | x2 = −1}. Then, as we saw in the proof of Theorem

7, if there exists x ∈ Z(D) with x2 = −1 , then S = {x,−x}.
Theorem 12. Let D be a division ring with 2 	= 0. Assume that there exists
x ∈ D such that x2 = −1. Put e = (1 + ix)2−1, f = 1− e = (1− ix)2−1. Then
C(D;−1) = eC(D;−1) ⊕ fC(D;−1).

(1) If x ∈ Z(D), then C(D;−1) = eC(D;−1)×fC(D;−1) (ring direct sum).

(2) In the case x 	∈ Z(D),

C(D;−1) ∼=
(

eC(D;−1)e eC(D;−1)e
eC(D;−1)e eC(D;−1)e

)
.

Proof. (1) If x ∈ Z(D), then e ∈ Z(C(D;−1)), whence we have the assertion.
(2) Assume that x 	∈ Z(D) and take d ∈ D such that xd 	= dx. Then by

calculation, we have that edf = (d + xdx + i(xd − dx))4−1, from which we see
edf 	= 0. It follows fC(D;−1) ∼= eC(D;−1), and hence we obtain the ring
isomorphism. �

Theorem 13. Let D be a division ring with 2 = 0. Then, C(D;−1) is a local
quasi-Frobenius ring such that

J(C(D;−1)) = S(C(D;−1)) = (1 + i)C(D;−1).
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Proof. By Theorem B, C(D;−1) is a quasi-Frobenius ring. Let p = 1 + i.
Then, pC(D;−1) is nilpotent, because p2 = 0 and p ∈ Z(C(D;−1)). Noting
that dimD C(D;−1)D = 2, we have pC(D;−1) = J(C(D;−1)) = S(C(D;−1))
and C(D;−1) is a local ring. �

4 Structure of C(D; a)

Let D be a division ring and a ∈ Z(D) \ {0}. First we extend Theorem 10 as
follows.

Theorem 14. Let D be a division ring. Then the following conditions are
equivalent:

(i) x2 	= a for all x ∈ D.

(ii) C(D; a) is a division ring.

Proof. (i) ⇒ (ii). Assume that C(D; a) is not a division ring. Then there
exists p ∈ C(D; a) such that 0 	= pC(D; a) � C(D; a). It follows from
dimD pC(D; a)D = 1 that pC(D; a) = pD. Hence there exists x ∈ D such
that pi = px. Then, pa = pi2 = (px)i = p(xi) = (pi)x = px2. Hence, we have
x2 = a.

(ii) ⇒ (i). Assume that there exists x ∈ D such that x2 = a. Then (x +
i)(x− i) = x2 − i2 = 0. Since x + i 	= 0 and x− i 	= 0, C(D; a) is not a division
ring. �

By the same argument as in the proof of Theorem 12, we show the following
theorem.

Theorem 15. Let D be a division ring with 2 	= 0. Assume that there exists
x =

√
a ∈ D. Put e = (1 + ixa−1)2−1, f = 1 − e = (1 − ixa−1)2−1. Then

C(D; a) = eC(D; a) ⊕ fC(D; a).

(1) If x ∈ Z(D), then C(D; a) = eC(D; a) × fC(D; a) ∼= D × D (ring direct
sum).

(2) In the case x 	∈ Z(D),

C(D; a) ∼=
(

eC(D; a)e eC(D; a)e
eC(D; a)e eC(D; a)e

)
=

(
eDe eDe
eDe eDe

)
.

Theorem 16. Let D be a division ring with 2 = 0 and there exists x =
√

a ∈ D.

(1) If x ∈ Z(D), then C(D; a) is a local quasi-Frobenius ring such that

J(C(D; a)) = S(C(D; a)) = (x + i)C(D; a).
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(2) Assume that x 	∈ Z(D) and take d ∈ D with xd 	= dx. Then,

C(D; a) ∼=
(

eC(D; a)e eC(D; a)e
eC(D; a)e eC(D; a)e

)
=

(
eDe eDe
eDe eDe

)

where e = (x + i)d(xd + dx)−1.

Proof. (1) Let x ∈ Z(D) with x2 = a and put p = x + i. Then, pC(D; a) is
nilpotent, because p2 = 0 and p ∈ Z(C(D; a)). Noting that the dimension,
we have pC(D; a) = J(C(D; a)) and it is the only non-zero proper right (left)
ideal of C(D; a). Hence C(D; a) is a local ring and, by noting its right socle
and left socle are simple, we see that C(D; a) is a quasi-Frobenius ring (see
Nicholson-Yousif [8]).

(2) Let x ∈ D \ Z(D) with x2 = a. Moreover, let d ∈ D such that xd 	= dx
and t = xd + dx. Then, xt = ad + xdx = da + xdx = tx and dt−1(x + i) =
dxt−1 + dt−1i = (xd + t)t−1 + dt−1i = (x + i)dt−1 + 1. Putting e = (x + i)dt−1,
we see e2 = (x + i)2(dt−1)2 + (x + i)dt−1 = e. Since it is easily seen that
ex(1 − e) = x + i 	= 0, eD = eC(D; a) ∼= (1 − e)C(D; a). Thus we have the
assertion. �

5 Structure of H(D; a, b)

Let R be a ring and a, b ∈ Z(R) \ {0}. In order to study the structure of
H(R; a, b), we observe idempotents and nilpotents in these rings as in Section
2.

For α = x + iy + jz + kw ∈ H(R; a, b) (x, y, z, w ∈ R), we write

α2 = A + iB + jC + kD

where A, B, C, D ∈ R. Then, by calculation, we see

A = x2 + ay2 + bz2 − abw2, B = xy + yx − bzw + bwz,

C = xz + zx + ayw − awy, D = wx + xw + yz − zy.

Therefore,

α2 = 0 ⇐⇒

(#2)

⎧⎪⎪⎨
⎪⎪⎩

x2 + ay2 + bz2 − abw2 = 0
xy + yx − bzw + bwz = 0
xz + zx + ayw − awy = 0
wx + xw + yz − zy = 0.
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Further,

α2 = α ⇐⇒

(∗2)

⎧⎪⎪⎨
⎪⎪⎩

x2 + ay2 + bz2 − abw2 = x
xy + yx − bzw + bwz = y
xz + zx + ayw − awy = z
wx + xw + yz − zy = w.

By (∗2) above, we obtain:

Fact 2. Let R = F be a commutative field with 2 	= 0. Then

α2 = α 	∈ {0, 1} ⇐⇒ x =
1
2

and
1
4
− ay2 − bz2 + abw2 = 0.

Here we state some results on a generalized quaternion ring H(D; a, b),
where D is a division ring with 2 	= 0. By (∗2) above and using the same
arguments as in the previous sections, we can show the following theorems
which correspond to Theorem 1, Corollary 5 and Theorem 4.

Theorem 17. Let D be a division ring with 2 	= 0.

(1) J(H(D; a, b)) = 0 and H(D; a, b) is a simple ring.

(2) |P i(H(D; a, b))| = 1 or 2 or 4.

(3) |P i(H(D; a, b))| = 1 iff H(D; a, b) is a division ring.

(4) Let |P i(H(D; a, b))| = 2. For any primitive idempotent e ∈ H(D; a, b),

H(D; a, b) ∼=
(

eH(D; a, b)e eH(D; a, b)e
eH(D; a, b)e eH(D; a, b)e

)
.

(5) Let |P i(H(D; a, b))| = 4. For any primitive idempotent e ∈ H(D; a, b),

H(D; a, b) ∼=

⎛
⎜⎝

eH(D;a, b)e eH(D;a, b)e eH(D;a, b)e eH(D;a, b)e
eH(D;a, b)e eH(D;a, b)e eH(D;a, b)e eH(D;a, b)e
eH(D;a, b)e eH(D;a, b)e eH(D;a, b)e eH(D;a, b)e
eH(D;a, b)e eH(D;a, b)e eH(D;a, b)e eH(D;a, b)e

⎞
⎟⎠.

(6) If D = F is a commutative field, then H(F ; a, b) is a division ring or

H(F ; a, b) ∼=
(

F F
F F

)
.

(7) For a commutative field F , |P i(H(F ; a, b))| = 4 does not occur.

The following theorem is one of main results of this paper.
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Theorem 18. Let D be a division ring with 2 	= 0. The following conditions
are equivalent:

(i) |P i(H(D; a, b))| = 4.

(ii) There exist p, q ∈ D such that p2 = a, q2 = b and pq = −qp.

In these case, the following {g1, g2, g3, g4} is a complete set of orthogonal prim-
itive idempotents:

g1 =
1
4
(1 + ipa−1 + jqb−1 + kpq(ab)−1),

g2 =
1
4
(1 + ipa−1 − jqb−1 − kpq(ab)−1),

g3 =
1
4
(1 − ipa−1 + jqb−1 − kpq(ab)−1),

g4 =
1
4
(1 − ipa−1 − jqb−1 + kpq(ab)−1).

Using this theorem, we can obtain examples H(D; a, b) with |P i(H(D; a, b))| =
4.

Example 19 (cf. Theorem 6). Consider D = H(R; a, b) where a, b < 0. Since
the solution of the equation X2 − aY 2 − bZ2 = 0 is only (0, 0, 0), we can see
from Theorem 17 and Theorem 21 below that D is a division ring. For this D,
by the theorem above, we see |P i(H(D; a, b))| = 4 and

H(D; a, b) ∼=

⎛
⎜⎜⎝

R R R R
R R R R
R R R R
R R R R

⎞
⎟⎟⎠ .

Corresponding to Theorem 16 we obtain the following result.

Theorem 20. Let D be a division ring with 2 = 0 and put H = H(D; a, b). If
there exist

√
a ∈ Z(D) and

√
b ∈ Z(D), then H is a local quasi-Frobenius ring

such that

J(H) = (
√

a + i)H + (
√

b + j)H

= (
√

a + i)D ⊕ (
√

b + j)D ⊕ (
√

a
√

b + k)D and

S(HH) = S(HH) = (
√

a
√

b + i
√

b + j
√

a + k)H

= (
√

a
√

b + i
√

b + j
√

a + k)D.
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Proof. Let I = (
√

a + i)H + (
√

b + j)H . Then, we can verify that

I = (
√

a + i)D ⊕ (
√

b + j)D ⊕ (
√

a
√

b + k)D,

I2 = (
√

a
√

b + i
√

b + j
√

a + k)D = (
√

a
√

b + i
√

b + j
√

a + k)H

and I3 = 0 by direct calculation. Since dim(H/I)D = 1, I = J(H) and H is a
local ring. Moreover, for any α = x + iy + jz + kw ∈ S(HH) (x, y, z, w ∈ D),

0 = (
√

a + i)α = (
√

ax + ay) + i(
√

ay + x) + j(
√

az + aw) + k(
√

aw + z)

and

0 = (
√

b + j)α = (
√

bx + bz) + i(
√

by + bw) + j(
√

bz + x) + k(
√

bw + y).

It follows that x =
√

ay, z =
√

aw and y =
√

bw. Substituting these equations
into α, we have α = (

√
a
√

b + i
√

b + j
√

a + k)w ∈ I2 . Hence S(HH) = I2.
Similarly, we obtain S(HH) = I2. Since S(HH) and S(HH) are simple and H
is a local artinian ring, H is a local quasi-Frobenius ring. �

We shall comment consistency between classical theory on H(F ; a, b) and
our theory on P i(H(F ; a, b)), where F is a commutative field with 2 	= 0.

The following is a classical theorem on H(F ; a, b) with 2 	= 0.

Theorem 21. Let F is a commutative field with 2 	= 0. The following condi-
tions are equivalent:

(i) H(F ; a, b) ∼=
(

F F
F F

)
.

(ii) The equation X2 − aY 2 − bZ2 + abW 2 = 0 has a non-trivial solution in
F .

(iii) The equation X2 − aY 2 − bZ2 = 0 has a non-trivial solution in F .

However, in general, the following condition is not equivalent to these condi-
tions.

(iv) X2 − aY 2 = 0, or X2 − bZ2 = 0, or X2 + abW 2 = 0 has a solution in F .

Indeed, for example, for H(Q(
√−3);−1,−1), we can easily see that (ii)

holds but (iv) does not hold.
On the other hand, from our theory, we can show the following result, from

which the classical theorem above follows.

Theorem 22. Let F be a commutative field with 2 	= 0. Then, the following
conditions are equivalent:
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(i) H(F ; a, b) ∼=
(

F F
F F

)
.

(ii) The equation 1
4
−aY 2−bZ2 +abW 2 = 0 has a solution in F , equivalently,

the equation 1 − aY 2 − bZ2 + abW 2 = 0 has a solution in F .

(iii) There exists an idempotent e of the form e = 1
2 +iy+jz+kw ∈ H(F ; a, b).

(iv) The equation 1
4 − aY 2 − bZ2 = 0 has a solution in F , or the equation

1
4 + abW 2 = 0 has a solution in F .

(v) The equation 1
4
− bZ2 + abW 2 = 0 has a solution in F , or the equation

1
4 − aY 2 = 0 has a solution in F .

(vi) The equation 1
4 − aY 2 + abW 2 = 0 has a solution in F , or the equation

1
4
− bZ2 = 0 has a solution in F .

(vii) There exists an idempotent e of the form e = 1
2 + iy + jz ∈ H(F ; a, b), or

an idempotent e of the form e = 1
2 + kw ∈ H(F ; a, b).

(viii) There exists an idempotent e of the form e = 1
2

+ jz + kw ∈ H(F ; a, b),
or an idempotent e of the form e = 1

2 + iy ∈ H(F ; a, b).

(ix) There exists an idempotent e of the form e = 1
2 + iy + kw ∈ H(F ; a, b),

or an idempotent e of the form e = 1
2

+ jz ∈ H(F ; a, b).

(x) At least one of the equations 1
4 − aY 2 − bZ2 = 0, 1

4 − bZ2 + abW 2 = 0, or
1
4 − aY 2 + abW 2 = 0 has a solution in F .

(xi) There exists an idempotent e of the form e = 1
2 + iy+jz, e = 1

2 +jz +kw,
or e = 1

2 + iy + kw in H(F ; a, b).

Proof. (i) ⇔ (iii) ⇔ (ii) and (iv) ⇔ (vii), (v) ⇔ (viii), (vi) ⇔ (ix) and (x) ⇔
(xi) follow from Theorem 17 and Fact 2. Moreover, (iv) ⇒ (ii) and (vii) ⇒
(xi) ⇒ (iii) are obvious.

(iv) ⇒ (v). Assume the equation 1
4 −aY 2− bZ2 = 0 has a solution in F , say

(y, z). If z 	= 0, then (Z, W ) = ((4bz)−1, y(2bz)−1) is a solution of the equation
1
4 − bZ2 + abW 2 = 0. Otherwise Y = y is a solution of 1

4 − aY 2 = 0. On the
other hand, in case the equation 1

4
+ abW 2 = 0 has a solution in F , clearly so

does 1
4 − bZ2 + abW 2 = 0.

(v) ⇒ (vi) and (vi) ⇒ (iv) are similarly shown as in the above proof.
(ii) ⇒ (iv). Let (y, z, w) be a solution of the equation 1

4
−aY 2−bZ2+abW 2 =

0. In case z 	= 2ayw, put y′ = (2yz − w)(2z − 4ayw)−1, z′ = (z2 − aw2)(z −
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2ayw)−1. Then,

1
4
− ay′2 − bz′2

= (z2 − aw2)(
1
4
− ay2 − bz2 + abw2)(z − 2ayw)−2

= 0.

Hence, (y′, z′) is a solution of the equation 1
4 − aY 2 − bZ2 = 0. Let z = 2ayw.

Then, since

4
(

1
4
− ay2

) (
1
4

+ abw2

)
=

1
4
− ay2 − bz2 + abw2 = 0,

we have 1
4
− ay2 = 0 or 1

4
+ abw2 = 0. These equations imply that (y, 0) and w

are solutions of the first equation and the second equation in (iv), respectively.
�

Finally we give the following supplementary results. Let D be a division
ring with 2 	= 0. For w ∈ D, we can see the following.

(1) (1 + iw)2−1 in H(D; a, b) is an idempotent iff w2 = a−1.

(2) (1 + jw)2−1 in H(D; a, b) is an idempotent iff w2 = b−1.

(3) (1 + kw)2−1 in H(D; a, b) is an idempotent iff w2 = (−ab)−1.

In particular, if w ∈ Z(D), then we can show, by a similar argument as in the
proof of Theorem 7 using Theorems 17 and 18, that each idempotent above is
a primitive idempotent. Therefore we obtain the following facts, etc.

H(D; a,−a) ∼= H(D;−a, a) ∼=
(

D D
D D

)
,

H(D; a,−a3) ∼= H(D; a3,−a) ∼=
(

D D
D D

)
.

Moreover, we obtain the following example.

Example 23. Let D be a division ring with 2 	= 0. If
√

a ∈ Z(D),
√

b ∈ Z(D),
or

√−ab ∈ Z(D), then

H(D; a, b) ∼=
(

D D
D D

)
.

We give several mappings which define this isomorphism.
Let x, y, z, w ∈ D. Then, each mapping in (1) - (3) below defines an isomor-

phism from H(D; a, b) to
(

D D
D D

)
.
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(1) If
√

a ∈ Z(D), then (1 + i/
√

a)2−1 is a primitive idempotent and the
mapping

x + iy + jz + kw �→
(

x + y
√

a (z + w
√

a)
√

ab
(z − w

√
a)/

√
a x − y

√
a

)

gives an isomorphism.
(2) If

√
b ∈ Z(D), then (1 + i/

√
b)2−1 is a primitive idempotent and the

mapping

x + iy + jz + kw �→
(

x + z
√

b (y − w
√

b)a
√

b

(y + w
√

b)/
√

b x − z
√

b

)

gives an isomorphism.
(3) If

√−ab ∈ Z(D), then (1 + i/
√−ab)2−1 is a primitive idempotent and

the mapping

x + iy + jz + kw �→
(

x + w
√−ab y

√−ab + zb

(−y
√−ab + zb)/b x − w

√−ab

)

gives an isomorphism.

We give a sketch of the proof of (1). Put H = H(D; a, b), e = (1+ i/
√

a)2−1

and f = 1 − e = (1 − i/
√

a)2−1. Then, H =
(

eHe eHf
fHe fHf

)
, and we see

eHe = eD ∼= D. Hence e and f are primitive idempotents. For P = x +
iy + jz + kw (x, y, z, w ∈ D), ePe = e(x +

√
ay), ePf = α(

√
abz + abw),

fPe = β(z/
√

a− w) and fPf = f(x −√
ay) where α = (j

√
a + k)(2ab)−1, β =

(j
√

a − k)2−1. Therefore,

P =
(

e(x +
√

ay) α(
√

abz + abw)
β(z/

√
a − w) f(x −√

ay)

)
.

Thus we get the isomorphism (1) above.
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