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Abstract

Evaluating the intersection of two real rational parameterized alge-
braic surfaces is an important problem in solid modeling. In [9, 10, 22],
we have already developed an approach based on generalized matrix rep-
resentations of parameterized curves and surfaces in order to represent
the intersection points or curves as the generalized eigenvalues of a matrix
or the zero set of a matrix determinant. These computations based on
complicate techniques from linear algebra such as QR-Decomposition,
ΔW -Decomposition to obtain square matrices that hold the necessary
properties. In this paper, we propose an new method to obtain intersec-
tion represented matrices that are square without complicate computing.

1 Introduction

In geometric modeling, parameterized algebraic curves and surfaces are used
intensively. To manipulate them, it is useful to have an implicit representation,
in addition to their given parametric representation. Indeed, a parametric
representation is for instance well adapted for visualization purposes whereas
an implicit representation allows significant improvements in the computation
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of intersections. Nevertheless, implicit representations are known to be very
hard to compute in general. Matrix-based implicit representations of plane
curves and surfaces already appeared several times in the literature (see e.g. [4,
11, 26]). However, all these approaches aimed at building a non-singular matrix
whose determinant is an implicit polynomial equation. The case of plane curves
is well understood: it is always possible to build such a non-singular matrix, in
particular by means of the moving lines method introduced by Sederberg [26].
The case of surfaces is much more involved because of their rich geometry and
the occurrence of base points (the points where the parameterization is not well
defined). Thus, in order to find a non-singular matrix whose determinant is an
implicit polynomial equation, one has to consider some very particular classes
of parameterizations (see e.g. [3, 8]). In [9, 10, 22], we show that matrix-based
implicit representations can be built for (almost all) parameterized al- gebraic
curves, including space curves, and surfaces if the requirement of getting a
non-singular matrix is deleted. Indeed, the matrices we will introduce are in
general singular matrices, but they still represent the curve or surface: the
vanishing of a determinant will be replaced by a drop-of-rank property. Our
approach is hence to keep these matrices as implicit representations on their
own and to develop their study and use. Added and combined to the parametric
representations, we believe that these implicit matrix representations can be a
powerful tool. The goal of this paper is continued to overcome this difficulty
by developing a simple method for computing an implicit representation of a
parameterized curve or surface in the form of a matrix, then present new way
to solve the intersection problems.

The paper is organized as follows. In Section 2, we review the construction
of curve and surface matrix representations. In Section 3, we present some
techniques in linear algebra such as linearization of a polynomial matrix and
rank of real matrix. In Section 4, we present some algorithms to solve the
intersection problems and characterizes the singular pointson the curve by rank
of a representation matrix in Section 5.

2 Implicit Matrix Representations of Parame-

terized Curves and Surfaces

In this section, we recall the construction in a general framework a family of
matrices given by parameterization φ from [3, 4, 8, 9, 23].

2.1 Matrix based implicit representations of parameter-
ized surfaces

Given a parametric rational surface, we briefly recall from [3, 8] how to build
a matrix that represents this surface in a sense that we will make explicit. Let
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a parameterization

P
2
R

φ−→ P
3
R (1)

(s : t : u) �→ (f1 : f2 : f3 : f4)(s, t, u) (2)

of a surface S such that f1, f2, f3, f4 ∈ R[s, t, u] are homogeneous polynomials
of the same degree d ≥ 1 and gcd(f1, . . . , f4) ∈ R\ {0}. Denote by x, y, z, w the
homogeneous coordinates of the projective space P3

R
. Notice that s, t, u are the

homogeneous parameters of the surface S and that an affine parameterization
of S can be obtained by ”inverting” one of these parameters; for instance,
setting s′ = s/u and t′ = t/u we get the following affine parameterization of S:

R
2 φ−→ R

3

(s′, t′) �→
(

f1(s′, t′, 1)
f4(s′, t′, 1)

,
f2(s′, t′, 1)
f4(s′, t′, 1)

,
f3(s′, t′, 1)
f4(s′, t′, 1)

)

The implicit equation of S is a homogeneous polynomial of smallest degree
S(x, y, z, w) ∈ R[x, y, z, w] such that S(f1 , f2, f3, f4) = 0 (observe that it is
defined up to multiplication by a nonzero element in R). It is well known that
the quantity deg(S) deg(φ) is equal to d2 minus the number of common roots
of f1, f2, f3, f4 in P2

R
, that are called base points of the parameterization φ,

counted with suitable multiplicities. The notation deg(S) stands for the degree
of the surface S, which is nothing but the degree of the implicit equation of S
and deg(φ) is equal to the number of pre-images of a general point on S by the
parameterization φ.

For every non-negative integer ν , we build a matrix M(φ)ν as follows. Con-
sider the set L(φ)ν of polynomials of the form

a1(s, t, u)x + a2(s, t, u)y + a3(s, t, u)z + a4(s, t, u)w

such that

• ai(s, t, u) ∈ R[s, t, u] is homogeneous of degree ν for i = 1, . . . , 4,

• ∑4
i=1 ai(s, t, u)fi(s, t, u) ≡ 0 in R[s, t, u].

The set L(φ)ν has a natural structure of R-vector space of finite dimension
because each polynomial ai(s, t, u) is homogeneous of degree ν and that the
set of homogeneous polynomials of degree ν in the variables s, t, u is an R-
vector space of dimension

(
ν+2
2

)
with canonical basis the set of monomials

{sν , sν−1t, · · · , uν}. So, denote by L(1), . . . , L(nν) a basis of the R-vector space
L(φ)ν; it can be computed by solving a single linear system whose indeter-
minates are the coefficients of the polynomials ai(s, t, u), i = 1, 2, 3, 4. The
matrix M(φ)ν is then by definition the matrix of coefficients of L(1), . . . , L(nν)
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as homogeneous polynomials of degree ν in the variables s, t, u. In other words,
we have the equality of matrices:[

sν sν−1t · · · uν
]
M(φ)ν =

[
L(1) L(2) · · · L(nν)

]
.

Notice that we have chosen for simplicity the monomial basis for the R-vector
space of homogeneous polynomials of degree ν in s, t, u. However, any other
choice, for instance the Bernstein basis, can be made without affecting the
result.

For every integer ν ≥ 2d−2, the matrix M(φ)ν is said to be a representation
matrix of φ because it satisfies the following properties under the assumption
that the base points of φ, if any, form locally a complete intersection, which
means that at each base point, the ideal of polynomials (f1, f2, f3, f4) can be
generated by two equations (see [8, Definition 4.8] for more details):

• The entries of M(φ)ν are linear forms in R[x, y, z, w].

• The matrix M(φ)ν has
(
ν+2
2

)
rows (which is nothing but the dimension

of the R- vector space of homogeneous polynomials of degree ν in three
variables, here s, t, u) and possesses at least as many columns as rows.

• The rank of M(φ)ν is
(
ν+2
2

)
(the rank of M(φ)ν measures the independency

of the columns (and the rows) as linear combinations with coefficients in
R).

• When specializing M(φ)ν at a given point P ∈ P3
R
, its rank drops if and

only if P belongs to S.

• The greatest common divisor of the
(
ν+2
2

)
-minors of M(φ)ν is equal to the

implicit equation of S raised to the power deg(φ).

From a computational point of view, the matrix M(φ)ν with the smallest possible
value of ν has to be chosen. It is rarely a square matrix. Also, notice that the
last property given above is never used for computations; our aim is to keep the
matrix M(φ)ν as an implicit representation of S in place of its implicit equation.

Example 1. The Steiner surface S of degree 2 parameterized by

φ1 : P
2 → P

3
R : (s : t : u) �→ (s2 + t2 + u2 : tu : st : su)

admits the matrix representation

M(x, y, z, w) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

−x 0 −y 0 −y y 0 z 0
y −y 0 w 0 −x −y 0 0
0 0 w 0 0 0 z 0 −x
w 0 0 −y 0 z 0 −y y
0 w 0 0 0 z 0 0 y
w 0 0 0 z 0 0 0 y

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Example 2. Let S be the rational surface of degree 3 that is parametrized by

φ : P
2 → P

3
R : (s : t : u) �→ (f1 : f2 : f3 : f4)

where

f1 = s3 + t2u, f2 = s2t + t2u, f3 = s3 + t3, f4 = s2u + t2u.

Then, a matrix representation of S is

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 w − y 0 0 z − x
w 0 0 x w − y 0 0

x − y − z 0 0 −z 0 w − y 0
0 w 0 0 x 0 −y
0 x − y − z w 0 −z x y + z − x
0 0 x − y − z 0 0 −z 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

2.2 Matrix-based implicit representations of parameter-
ized curves in space

Let f0, f1, f2, f3 be homogeneous polynomials in R[s, t] of the same degree d ≥ 1
such that their greatest common divisor is a non-zero constant in R. Consider
the regular map of a parametric space curve

P
1
R

φ−→ P
3
R

(s : t) �→ (f0 : f1 : f2 : f3)(s, t).

Consider the set of syzygies of f := (f0, f1, f2, f3), that is to say the set

Syz(f ) =

{
(g0(s, t), . . . , g3(s, t)) :

3∑
i=0

gi(s, t)fi(s, t) = 0

}
⊂

3⊕
i=0

R[s, t].

From a classical structure theorem of commutative algebra called the Hilbert-
Burch Theorem (see for instance [14, §20.4]), Syz(f ) is known to be a free and
graded R[s, t]-module of rank 3. Moreover, there exists non-negative integers
μ1, μ2, μ3 and 3 vectors of polynomials

(ui,0(s, t), ui,1(s, t), ui,2(s, t), ui,3(s, t)) ∈ Syz(f ) ⊂ R[s, t]4, i = 1, 2, 3, (3)

such that

• for every i ∈ {1, 2, 3}, j ∈ {0, 1, 2, 3}, ui,j(s, t) is a homogeneous polyno-
mial in R[s, t] of degree μi ≥ 0,

• three vectors in (3) form an R[s, t]-basis of Syz(f ),
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• μ1 + μ2 + μ3 = d where d = deg fi.

• For every j ∈ {0, . . . , 3}, the determinant of the matrix obtained by
deleting the column (ui,j)i=1,2,3 from the matrix

M(s, t) :=

⎛
⎝ u1,0(s, t) u1,1(s, t) u1,2(s, t) u1,3(s, t)

u2,0(s, t) u2,1(s, t) u2,2(s, t) u2,3(s, t)
u3,0(s, t) u3,1(s, t) u3,2(s, t) u3,3(s, t)

⎞
⎠ (4)

is equal to (−1)jc fj(s, t) ∈ R[s, t] where c ∈ R \ {0}.
A collection of vectors as in (3) that satisfy the above properties is called a
μ-basis of the parameterization φ. It is important to notice that a μ-basis is
far from unique, but the collection of integers (μ1, μ2, μ3) is unique if we order
it. Therefore, in the sequel we will always assume that a μ-basis is ordered so
that 0 ≤ μ1 ≤ μ2 ≤ μ3.

For every integer i = 1, 2, 3 and every integer ν ∈ N, consider the matrix
Sylvν(ui) that satisfies to the identity

[
s

ν
s

ν−1
t · · · st

ν−1
t
ν
]
× Sylvν(ui) =

[
s

ν−μi ui s
ν−μi−1

tui · · · st
ν−μi−1

ui t
ν−μiui

]
.

It is a (ν + 1)× (ν − μi + 1)-matrix which usually appears as a building block
in well-known Sylvester matrices. It follows that the matrix

Sylvν(u1, u2, u3) :=

⎛
⎝ Sylvν(u1) Sylvν(u2) Sylvν(u3)

⎞
⎠ .

It has ν + 1 rows and 3(ν + 1) − d columns. Its entries are linear forms in
R[x, y, z, w]; in particular, it can be evaluated at any point (x : y : z : w) ∈ P3

R

and yielding a matrix with coefficients in R.
In [9], we proved that for all ν ≥ μ3 + μ2 − 1 the matrix
M(φ)ν := Sylvν(u1, u2, u3) is a matrix-based representation of the curve C,

i.e.,

(i) M(φ)ν is generically full rank, that is to say generically of rank ν + 1,

(ii) the rank of M(φ)ν drops exactly on the curve C.

Of course, in practice the most useful matrix is the smallest one, that is to say
M(φ)μ3+μ2−1.

Example 3. Suppose that the parameterization φ is given by

f0(s, t) = 3s4t2 − 9s3t3 − 3s2t4 + 12st5 + 6t6,

f1(s, t) = −3s6 + 18s5t − 27s4t2 − 12s3t3 + 33s2t4 + 6st5 − 6t6,

f2(s, t) = s6 − 6s5t + 13s4t2 − 16s3t3 + 9s2t4 + 14st5 − 6t6,

f3(s, t) = −2s4t2 + 8s3t3 − 14s2t4 + 20st5 − 6t6.
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A μ-basis for C is

p = (s2 − 3st + t2)x + t2y,

q = (s2 − st + 3t2)y + (3s2 − 3st − 3t2)z,

r = 2t2z + (s2 − 2st − 2t2)w.

From deg(p) = deg(q) = deg(r) = 2, we have μ3 + μ2 − 1 = 3 and hence a
matrix representation of C is given by

M(φ)3 =

⎛
⎜⎜⎝

x + y 0 3y − 3z 0 2z − 2w 0
−3x x + y −y − 3z 3y − 3z −2w 2z − 2w
x −3x y + 3z −y − 3z w −2w
0 x 0 y + 3z 0 w

⎞
⎟⎟⎠ .

3 Linearization of a polynomial matrix in the

monomial basis

3.1 Linearization of a polynomial matrix

Let A and B be two matrices of size m × n with entries in R. We will call a
generalized eigenvalue of A and B a value in the set

λ(A, B) := {t ∈ R : rank(A − tB) < min{m, n}}.

In the case m = n, the matrices A and B have n generalized eigenvalues if and
only if rank(B) = n. If rank(B) < n, then λ(A, B) can be finite, empty or
infinite. Moreover, if B is invertible then λ(A, B) = λ(AB−1, I) = λ(AB−1),
which is the ordinary spectrum of AB−1.

Suppose given an m × n-matrix M(t) = (ai,j(t)) with polynomial entries
ai,j(t) ∈ R[t]. It can be equivalently written as a polynomial in t with coeffi-
cients m × n-matrices with entries in R: if d = maxi,j{deg(ai,j(t))} then

M(t) = Mdtd + Md−1t
d−1 + . . . + M0

where Mi ∈ Rm×n.
The generalized companion matrices A, B of the matrix M(t) are the ma-

trices with entries in R of size ((d − 1)m + n) × dm that are given by

A =

⎛
⎜⎜⎜⎜⎜⎝

0 Im . . . . . . 0
0 0 Im . . . 0
...

...
...

...
...

0 0 . . . 0 Im

M t
0 M t

1 . . . . . . M t
d−1

⎞
⎟⎟⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎜⎜⎝

Im 0 . . . . . . 0
0 Im 0 . . . 0
...

...
...

...
...

0 0 . . . Im 0
0 0 . . . 0 −M t

d

⎞
⎟⎟⎟⎟⎟⎠
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where Im stands for the identity matrix of size m and M t
i stands for the trans-

pose of the matrix Mi. These companion matrices allow to linearize the poly-
nomial matrix M(t) in the sense that there exists two unimodular matrices E(t)
et F (t), i.e., invertible matrices with non-vanishing determinant independent
of t, with entries in R[t] and of size dm and (d−1)m+n respectively, such that

E(t) (A − tB) F (t) =
(

tM(t) 0
0 Im(d−1)

)
. (5)

Then, we have

rank M(t) drops ⇔ rank(A − tB) drops.

3.2 Linearization of a bivariate polynomial matrix

Suppose given an m × n-matrix M(s, t) = (ai,j(s, t)) with polynomial entries
ai,j(s, t) ∈ R[s, t]. It can be equivalently written as a polynomial in s whose co-
efficients are m×n-matrices with entries in R[t]. If d = maxi,j{degs(ai,j(s, t))}
then set

M(s, t) = Md(t)sd + Md−1(t)sd−1 + . . . + M0(t)

where Mi(t) ∈ R[t]m×n for all i = 0, . . . , d.

Definition 4. The generalized companion matrices A(t), B(t) of the matrix
M(s, t) are the matrices with coefficients in R[t] of size ((d − 1)m + n) × dm
that are given by

A(t) =

⎛
⎜⎜⎜⎜⎜⎝

0 Im . . . . . . 0
0 0 Im . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
0 0 . . . . . . Im

Mt
0(t) Mt

1(t) . . . . . . Mt
d−1(t)

⎞
⎟⎟⎟⎟⎟⎠ , B(t) =

⎛
⎜⎜⎜⎜⎜⎝

Im 0 . . . . . . 0
0 Im 0 . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
0 0 . . . Im 0
0 0 . . . . . . −Mt

d(t)

⎞
⎟⎟⎟⎟⎟⎠

where Im stands for the identity matrix of size m and M t
i (t) stands for the

transpose of the matrix Mi(t).

These companion matrices allows to linearize the polynomial matrix M(s, t)
in the sense that there exists two unimodular matrices E(s, t) et F (s, t) with
coefficients in C[s, t] and of size dm and (d − 1)m + n respectively, such that

E(s, t) (A(t) − sB(t)) F (s, t) =
(

tM(s, t) 0
0 Im(d−1)

)
. (6)

It is important to notice that (6) implies that the computation of the spec-
trum of the polynomial matrix M(s, t) can be reduced to the computation of
the spectrum of the polynomial matrix A(t) − sB(t) which has the advantage
to be linear in the variable s.

We also refer the reader to [10, 15, 17, 22] for more details.
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3.3 Rank of a real matrix

Given a matrix A ∈ Rm×n, denote by N(A) := {x ∈ Rn | Ax = 0} a null space
of A and by At a transpose matrix of the matrix A.

Lemma 5. With above notation, we have N(AtA) = N(A).

Proof. Assume that x ∈ N(A), we have Ax = 0. This implies that AtAx = 0.
Thus x ∈ N(AtA). Now, we get x ∈ N(AtA) ⇒ AtAx = 0. Thus,

0 =< AtAx, x >=< Ax, Ax >= ‖Ax‖2
2

where ‖·‖2 denotes the Euclidean norm on Rm. So that, Ax = 0. This implies
x ∈ N(A). �

Since N(AtA) = N(A), we obtain easily N(AAt) = N(At).

Proposition 6. With above notation, we have

rank(AtA) = rank(A) = rank(At) = rank(AAt).

Proof. From dim(N(A)) + rank(A) = n, we deduce that

rank(A) = n − dim(N(A)).

Otherwise, we have also rank(AtA) = n − dim(N(AtA)). Thus, by Lemma 5
we have rank(AtA) = rank(A). Similarly, rank(At) = rank(AAt) and the well
known result is rank(A) = rank(At), thus we obtain

rank(AtA) = rank(A) = rank(At) = rank(AAt).

�
Remark 7. Matrix AtA is the square matrix and Proposition 6 is false if the
entries of matrix A are complex number. For instance, if A = [i, 1], where
i2 = −1, then AAt = 0, thus rank(A) = 1 �= 0 = rank(AtA).

4 The intersection problems of parameterized

curves and surfaces

4.1 Curve/Curve intersection

Suppose given two rational curves, say C1 parameterized by

P
1
R

φ1−→ P
3
R : (s : t) �→ (f0(s, t) : f1(s, t) : f2(s, t) : f3(s, t)) (7)

and C2 parameterized by the regular map

P
1
R

φ2−→ P
3
R

: (s : t) �→ (g0(s, t) : g1(s, t) : g2(s, t) : g3(s, t)). (8)
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Let M(φ1)ν be a representation matrix of C1 for a suitable integer ν . The substi-
tution in M(φ1)ν of the variables x, y, z, w by the homogeneous parameterization
of C2 yields the matrix

M(φ1)ν(s, t) := M(φ1)ν(g0(s, t), . . . , g3(s, t)).

As a consequence of the properties of a representation matrix, we have the
following property: Let (s0 : t0) ∈ P1

R
. Then rank M(φ1)ν(s0, t0) < ν + 1

if and only if the point φ2(s0 , t0) belongs to the intersection locus C1 ∩ C2.
The set C1 ∩ C2 is in correspondence with the points of P1

R
where the rank of

M(φ1)ν(s, t) drops with (s, t) ∈ R2. By setting t = 1, the determination of the
values of s ∈ R such that the rank of M(φ1)ν(s, 1) drops. Now, we put Mν(s) =
M(φ1)ν(s, 1)M(φ1)t

ν(s, 1) then Mν(s) is a regular matrix of size (ν + 1)× (ν + 1).
Since Proposition 6, we have the following theorem:

Theorem 8. With above notation, we have

{s ∈ R | rank(M(φ1)ν(s, 1)) drops} = {s ∈ R | rank(Mν(s)) drops}.
So, to find the real points of C1 ∩ C2, we only find the real values of s such

that the rank of Mν(s) drops. Notice that M(φ1)ν(s, 1) is not regular matrix but
Mν(s) is the regular matrix.

Now, we get the following Algorithm:

Algorithm 1: Intersection of two parametric curves
Input: Two parametric curves C1 and C2 given by (7) and (8).
Output: The real intersection points of C1 and C2.
1. Compute the matrix representation M(φ)ν(φ1)(x, y, z, w) of C1 for a
suitable ν.
2. Replace x, y, z, w by the parameterization of C2 in the matrix
M(φ)ν(φ1) to get the matrix M(φ)ν(φ1)(s) (t = 1).
3. Compute Mν(s) = M(φ1)ν(s)M(φ1)t

ν(s) and compute the generalized
companion matrices A and B of M(φ)ν(s).
4. Compute the real generalized eigenvalues of (A, B).
5. For each real eigenvalue s0, φ2(s0 : 1) is an real intersection point.

Remark that this algorithm returns all the points in C1∩C2 except possibly
the point φ(1 : 0). This point can be treated independently.

Example 9 ([9, Example 25] ). Let C1 be the rational space curve given by
the parameterization

f0(s, t) = 3s4t2 − 9s3t3 − 3s2t4 + 12st5 + 6t6,

f1(s, t) = −3s6 + 18s5t − 27s4t2 − 12s3t3 + 33s2t4 + 6st5 − 6t6,

f2(s, t) = s6 − 6s5t + 13s4t2 − 16s3t3 + 9s2t4 + 14st5 − 6t6,

f3(s, t) = −2s4t2 + 8s3t3 − 14s2t4 + 20st5 − 6t6.
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We want to compute the real intersection of C1 with the twisted cubic C2 which
is parameterized by

g0(s, t) = s3, g1(s, t) = s2t, g2(s, t) = st2, g3(s, t) = t3.

From Example 3, we have a representation matrix of C1:

M(φ)3 =

⎛
⎜⎜⎝

x + y 0 3y − 3z 0 2z − 2w 0
−3x x + y −y − 3z 3y − 3z −2w 2z − 2w
x −3x y + 3z −y − 3z w −2w
0 x 0 y + 3z 0 w

⎞
⎟⎟⎠ .

A real point P at finite distance belongs to the intersection locus of C1 and C2

if and only if P = (1 : t : t2 : t3) and t is one of the real generalized eigenvalues
of the matrix M(t) := M(φ)3(1, t)

(
M(φ)3(1, t)

)t = (aij) of size 4 × 4 where

a11 = 1 + 2t + 10t2 − 18t3 + 13t4 − 8t5 + 4t6,

a12 = −3 − 3t− 3t2 − 6t3 + 9t4 − 4t5 + 4t6

a13 = 1 + t + 3t2 + 6t3 − 9t4 + 2t5 − 2t6,

a14 = 0
a21 = −3 − 3t− 3t2 − 6t3 + 9t4 − 4t5 + 4t6

a22 = 10 + 2t + 11t2 − 12t3 + 22t4 + 8t6 − 8t5

a23 = −6 − 3t− 4t2 − 12t3 + 2t6 − 4t5

a24 = 1 + t + 3t2 + 6t3 − 9t4 + 2t5 − 2t6

a31 = 1 + t + 3t2 + 6t3 − 9t4 + 2t5 − 2t6

a32 = −6 − 3t− 4t2 − 12t3 + 2t6 − 4t5

a33 = 10 + 2t2 + 12t3 + 18t4 + 5t6

a34 = −3 − t2 − 6t3 − 9t4 − 2t6

a41 = 0
a42 = 1 + t + 3t2 + 6t3 − 9t4 + 2t5 − 2t6

a43 = −3 − t2 − 6t3 − 9t4 − 2t6

a44 = 1 + t2 + 6t3 + 9t4 + t6

We see that M(t) is the regular polynomial matrix, thus the computation yields
a real eigenvalue t = 0, and thus C1 intersect C2 at the only real point P = (1 :
0 : 0 : 0).

4.2 Curve/Surface intersection

Suppose given a parametric surface S represented by a homogeneous and irre-
ducible implicit equation S(x, y, z, w) = 0 in P3

R
and a rational space curve C
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represented by a parameterization

φ : P
1
R → P

3
R : (s : t) �→ (f0(s, t) : f1(s, t) : f2(s, t) : f3(s, t)) (9)

A standard problem in nonlinear computational geometry is to determine
the set C ∩ S ⊂ P3

R
, especially when it is finite. One way to proceed, is to

compute the roots of the homogeneous polynomial

S(f0(s, t), f1(s, t), f2(s, t), f3(s, t)) (10)

because they are in correspondence with C ∩ S through the regular map φ.
Observe that (10) is identically zero if and only if C ∩S is infinite, equivalently
C ⊂ S (for C is irreducible).

Assume that M(x, y, z, w) is a matrix representation of the surface S, mean-
ing a representation of the polynomial S(x, y, z, w). By replacing the variables
x, y, z, w by the homogeneous polynomials f0(s, t), f1(s, t), f2(s, t), f3(s, t) re-
spectively, we get the matrix

M(s, t) = M(f0(s, t), f1(s, t), f2(s, t), f3(s, t)).

Therefore, we have the following easy property: for every point (s0 : t0) ∈ P1
R

the rank of the matrix M(s0, t0) drops if and only if the point (f0(s0, t0) :
f1(s0, t0) : f2(s0, t0) : f3(s0, t0)) belongs to the intersection locus C ∩ S.

It follows that points in C∩S associated to points (s : t) such that s �= 0, are
in correspondence with the set of values t ∈ R such that M(1, t) drops of rank
strictly less than its row and column dimensions, i.e., the set of generalized
eigenvalues of M(1, t). Similarly the Algorithm in Section 4.1, we present an
algorithm from linear algebra which allows us to obtain the intersection points
in P1

R
of C ∩ S.

Algorithm 2: Intersection of parametric curves and surfaces
Input: A parametric surface S and a parametric curve C given by (1)

and (9).
Output: The intersection points of S and C.
1. Compute the matrix representation MS(x, y, z, w) of S.
2. Substitute x, y, z, w by the parameterization of C in the matrix
MS(x, y, z, w) to get the matrix MS(t) (s = 1).
3. Compute M(t) = MS(t)Mt

S(t) and compute the generalized companion
matrices A and B of M(t).
4. Compute the real generalized eigenvalues of (A, B).
5. For each real eigenvalue t0, φ(1 : t0) is an real intersection point.

4.3 Surface/Surface intersection

Suppose given two distinct parametric surfaces S1 and S2. A standard problem
in nonlinear computational geometry is to determine the set S1 ∩ S2 which is
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a curve in P3
R
. As we explained above, one can build a representation matrix

of S1 that we will denote by M(x, y, z, w). Let

φ : P
2
R → P

3
R : (s : t : u) �→ (a(s, t, u) : b(s, t, u) : c(s, t, u) : d(s, t, u))

be a parameterization of S2 where a(s, t, u), b(s, t, u), c(s, t, u), d(s, t, u) are ho-
mogeneous polynomials of the same degree and without common factor in
R[s, t, u]. By substituting in the matrix M(x, y, z, w) the variables x, y, z, w
by the homogeneous polynomials a(s, t, u), b(s, t, u), c(s, t, u), d(s, t, u) respec-
tively, we get the matrix

M(s, t, u) := M(φ(s : t : u)) = M(a(s, t, u), b(s, t, u), c(s, t, u), d(s, t, u)).

From the properties of the representation matrix M(x, y, z, w), we know that
M(s, t, u) has maximal rank ρ (where ρ is the number of rows of M). Moreover,
for every point (s0 : t0 : u0) ∈ P2

R
we have

rank(M(s0, t0, u0)) < ρ if and only if

{
φ(s0 : t0 : u0) ∈ S1 ∩ S2 or
(s0 : t0 : u0) is a base point of φ.

(11)
The equivalence (11) shows that the spectrum of the matrix M(s, t, u), that

is to say the set{
(s0 : t0 : u0) ∈ P

2
R

such that rank M(s0, t0, u0) < ρ
}

,

yields the intersection locus S1∩S2 plus the base points of the parameterization
φ of S2.

Theorem 10 ([10] ). The spectrum of the matrix M(s, t, u) is an algebraic
curve in P2, which means that it is equal to the zero locus of a homogeneous
polynomial in R[s, t, u]. In particular, there are no isolated points in the spec-
trum of M(s, t, u).

In [10], we extend the approach of Canny and Manocha [23] concerning sur-
face/surface intersection to the significantly larger class of parameterizations
introduced in Section 2. As a consequence if we use matrix representations
to deal with the surface/surface intersection problem, we will at some point
end up with a pencil of bivariate and non-square matrices that represents the
intersection curve (after dehomogenization). Therefore, in order to be able to
handle this intersection curve, for instance to determine its exact topology, it
is necessary to extract a pencil of bivariate and square matrices that yields a
matrix representation of the intersection curve as a matrix determinant. For
that purpose, we developed an algorithm (called ΔW -Decomposition) based on
the remarkable work of V. N. Kublanovskaya [19, 20]. We build two compan-
ion matrices A(t) and B(t) which allow us to linearize the polynomial matrix
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M(s, t, 1) such that the spectrum of the matrix M(s, t, 1) coincides the spec-
trum of the matrix A(t)− sB(t). Then, we provide an algorithm that extracts
a square matrix whose determinant represents the intersection locus S1 ∩ S2.
A pencil of polynomial matrices A(t) − sB(t) is equivalent to a pencil of the
following form

P (t)(A(t) − sB(t))Q(t) =

⎛
⎝ M1,1(s, t) 0 0

M2,1(s, t) M2,2(s, t) 0
M3,1(s, t) M3,2(s, t) M3,3(s, t)

⎞
⎠ (12)

where P (t), Q(t) are unimodular matrices and the pencil M2,2(s, t) is a regular
pencil that corresponds to the intersection locus S1 ∩ S2.

However, this work seem to be quite complicated. Thus, by applying Propo-
sition 6, we can transform non square matrix M(s, t, 1) into the square matrix
M(s, t) = M(s, t, 1)M t(s, t, 1) where in R2 the spectrum of the matrix M(s, t, 1)
coincides the spectrum of the square matrix M(s, t) whose determinant rep-
resents the intersection locus S1 ∩ S2. Obviously, the way that we obtain
the square matrix M(s, t) is much easier than the way to obtain M2,2(s, t) by
applying ΔW -Decomposition. However, the inconvenient of this approach is
that degs,t det(M(s, t)) can be more two times greater than degs,t M2,2(s, t) and
det(M(s, t)) can contain some extract factors.

Now, we present the following algorithm and an illustrative example.

Algorithm 3: Matrix representation of an intersection curve
Input: Two parametric algebraic surfaces S1 and S2 such that the

parameterization of S1 has local complete intersection base
points.

Output: The intersection curve S1 ∩ S2 represented as a matrix
determinant.

1. Compute a matrix representation of S1, say M(x, y, z, w).
2. Replace x, y, z, w by the parameterization of S2 in the matrix
M(x, y, z, w) to get a matrix M(s, t) (set u = 1).
3. Return the regular matrix M(s, t) = M(s, t)M t(s, t).

We recall our example in [10] for comparison of two methods.

Example 11 ([10, Example 5.3 ] ). Given the Steiner surface S1 parame-
terized by

φ1 : P
2 → P

3
R

: (s : t : u) �→ (s2 + t2 + u2 : tu : st : su)
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which admits the matrix representation

M(x, y, z, w) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

−x 0 −y 0 −y y 0 z 0
y −y 0 w 0 −x −y 0 0
0 0 w 0 0 0 z 0 −x
w 0 0 −y 0 z 0 −y y
0 w 0 0 0 z 0 0 y
w 0 0 0 z 0 0 0 y

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and the cubic surface S2 parameterized by

φ2 : P
2 → P

3
R : (s : t : u) �→ (s3 + t3 : stu : su2 + tu2 : u3).

To determine the intersection between S1 and S2, we will compute the spectrum
of the polynomial matrix

M(s, t, u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−s3 − t3 0 −stu 0 −stu stu 0 su2 + tu2 0
stu −stu 0 u3 0 −s3 − t3 −stu 0 0
0 0 u3 0 0 0 su2 + tu2 0 −s3 − t3

u3 0 0 −stu 0 su2 + tu2 0 −stu stu

0 u3 0 0 0 su2 + tu2 0 0 stu

u3 0 0 0 su2 + tu2 0 0 0 stu

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

By dehomogenizing with respect to the variable u, we consider

M(s, t) =

⎛
⎜⎜⎜⎜⎜⎝

−s3 − t3 0 −st 0 −st st 0 s + t 0
st −st 0 1 0 −s3 − t3 −st 0 0
0 0 1 0 0 0 s + t 0 −s3 − t3

1 0 0 −st 0 s + t 0 −st st
0 1 0 0 0 s + t 0 0 st
1 0 0 0 s + t 0 0 0 st

⎞
⎟⎟⎟⎟⎟⎠ .

Thus, we obtain the regular matrix M(s, t) = M(s, t)M t(s, t) and determinant
of this matrix is

F (s, t) = 2(s
5
t − s

2 − 2st− s
2
t
2 − t

2 − 2s
3
t
3
+ t

5
s)

2
(s

6
+ 2s

3
t
3
+2s

2
t
2
+ s

2
+ 2st + t

6
+ t

2
+1)

2
.

From s6 + 2s3t3 + 2s2t2 + s2 + 2st + t6 + t2 + 1 > 0 for all (s, t) ∈ R2, so
it yields a real plane curve of degree 6 whose implicit equation is t2 + 2st +
s2t2 + 2s3t3 − st5 + s2 − ts5. In this example, we see that the extract factor
s6 + 2s3t3 + 2s2t2 + s2 + 2st + t6 + t2 + 1 is appeared in the implicit equation
of intersection locus S1 ∩ S2.

5 Rank of a representation matrix at a singular

point

Let P be a point on C. There exists at least one point (s1 : t1) ∈ P1
C

such that
P = φ(s1 : t1). Now, let H be a plane in P3

C
passing through P , not containing
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C and denote by H(x, y, z, w) an equation (a linear form in C[x, y, z, w]) of H.
We have the following degree d homogeneous polynomial in C[s, t]

H(f0(s, t), f1(s, t), f2(s, t), f3(s, t)) =
d∏

i=1

(tis − sit) (13)

where the points (si : ti) ∈ P1
C
, i = 1, . . . , d, are not necessarily distinct.

We define the intersection multiplicity of C with H at the point P , denoted
iP (C,H), as the number of points (si : ti)i=1,...,d such that φ(si : ti) = P .

The multiplicity mP (C) of the point P on C is defined as the minimum of
the intersection multiplicities iP (C,H) where H runs over all the planes not
containing C and passing through the point P ∈ C. This minimum is reached
for a sufficiently generic H.

Suppose given a representation matrix M(φ)ν of the curve C which is built
from the μ-basis p, q, r of degree μ1 ≤ μ2 ≤ μ3. Its entries are linear forms in
R[x, y, z, w] so that it makes sense to evaluate M(φ)ν at a point P in P3

R
to get

a matrix M(φ)ν(P ) with entries in R. In [9], we prove the following property:
Given a point P in P3

C
, for every integer ν ≥ μ2 + μ3 − 1 we have

rank M(φ)ν(P ) = ν + 1 − mP (C),

or equivalently corank M(φ)ν(P ) = mP (C). Here, we remark that if we put
Mν = M(φ)νM(φ)t

ν then Mν is a square matrix. Similarly, the results in [9] is
stated the following:

Theorem 12. Given a point P in P3
R
, for every integer ν ≥ μ2 + μ3 − 1 we

have
rank Mν(P ) = ν + 1 − mP (C),

This result provides a stratification of the points in P3
R

with respect to the
curve C. Indeed, we have that

• if P is such that rank Mν(P ) = ν + 1 then P �∈ C,

• if P is such that rank Mν(P ) = ν then P is a regular point (i.e. of multi-
plicity 1) on C,

• if P is such that rank Mν(P ) = ν−1 then P is singular point of multiplicity
2 on C,

• and so on.

Moreover, if P is a singular point on C then necessarily

2 ≤ mP (C) ≤ μ2 or mP (C) = μ3.

Now, we return an illustrative example.
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Example 13 ( [9, Example 18]). Let C be the rational space curve param-
eterized by

φ : P
1
R → P

3
R : (s : t) �→ (s5 : s3t2 : s2t3 : t5).

A μ-basis for C is given by

p = ty − sz,

q = t2x − s2y,

r = t2z − s2w.

From deg(q) = deg(r) = 2, we can choose ν = 3, then a matrix representa-
tion of C is given by

M(φ)3 =

⎛
⎜⎜⎝

y 0 0 x 0 z 0
−z y 0 0 x 0 z
x −z y −y 0 −w 0
0 0 −z 0 −y 0 −w

⎞
⎟⎟⎠ .

Substituting x = s5, y = s3t2, z = s2t3, w = t5, we obtain

M(φ)3(s, t) =

⎛
⎜⎜⎝

s3t2 0 0 s5 0 s2t3 0
−s2t3 s3t2 0 0 s5 0 s2t3

0 −s2t3 s3t2 −s3t2 0 −t5 0
0 0 −s2t3 0 −s3t2 0 −t5

⎞
⎟⎟⎠ .

and
M3(s, t) = M(φ)3(s, t)M(φ)3(s, t)

t =
⎛
⎜⎜⎝

s6t4 + s10 + s4t6 −s5t5 −s8t2 − s2t8 0
−s5t5 2s4t6 + s6t4 + s10 −s5t5 −s8t2 − s2t8

−s8t2 − s2t8 −s5t5 s4t6 + 2s6t4 + t10 −s5t5

0 −s8t2 − s2t8 −s5t5 s4t6 + s6t4 + t10

⎞
⎟⎟⎠ .

Now, the Smith form of M3(s, 1) and M3(1, t) are respectively⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 s20 + s18 + 3s16 + 4s14 + 3s12 + 4s10 + 3s8 + s6 + s4 0
0 0 0 0

⎞
⎟⎟⎠

and ⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 t20 + t18 + 3t16 + 4t14 + 3t12 + 4t10 + 3t8 + t6 + t4 0
0 0 0 0

⎞
⎟⎟⎠ .

Therefore, the singular factors (see [9]) of C are d4(s, t) = 1, d3(s, t) = 1,
d2(s, t) = (s20 +s18 +3s16 +4s14 +3s12 +4s10 +3s8 +s6 +s4)(t20 + t18 +3t16 +
4t14 + 3t12 + 4t10 + 3t8 + t6 + t4).

The equation d2(s, t) = 0 has only two real roots s = 0 or t = 0. Thus, C
has only two singular points of multiplicity 2, the points A = (0 : 0 : 0 : 1)
and B = (1 : 0 : 0 : 0) that correspond to the parameters (0 : 1) and (1 : 0)
respectively.
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6 Conclusion and future work

This paper presents an useful tool for solving intersection problems by the im-
plicit representations of parametric curves or parametric surfaces. Its main
interested of this tool is particularly to easily transform intersection problems
into numerical linear algebra problems which can be solved using powerful and
robust algorithms, such as the singular value decomposition and the computa-
tion of generalized eigenvalues or eigenvectors.

In future work, we plant to study their numerical stability and robustness
of this approach and also compare the numerical stability and the robustness
of the existing methods in particular situation.
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tions”. Traduit du Russe par Ch. Sarthou, Collection Universitaire de Mathématiques,
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