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Abstract

We present, in a simplified setting, a non-commutative version of the well-
known Gel’fand-Naı̆mark duality (between the categories of compact Hausdorff
topological spaces and commutative unital C*-algebras), where “geometric spec-
tra” consist of suitable finite bundles of one-dimensional C*-categories equipped
with a transition amplitude structure satisfying saturation conditions. Although
this discrete duality actually describes the trivial case of finite-dimensional C*-al-
gebras, the structures are here developed at a level of generality adequate for the
formulation of a general topological/uniform Gel’fand-Naı̆mark duality, fully ad-
dressed in a companion work.

1 Introduction
The celebrated Gel’fand-Naı̆mark duality theorem (see for example B.Blackadar [7,
II.2.2.4, II.2.2.6]) states that there is a duality between the category of unital ∗-homo-
morphisms between commutative unital C*-algebras and the category of continuous
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104 Discrete Non-commutative Gel’fand-Naı̆mark Duality

maps between compact Hausdorff topological spaces. It is the standard departure
point for understanding the transition from classical to quantum mechanics as well as
motivating the development of non-commutative geometry [9].

Several (partially successful) attempts have been made to generalize such a duality
to the case of non-commutative C*-algebras with different techniques (we will not
attempt here to enter into the reconstruction of the long history of this problem).

It is our purpose (fully addressed in its more general form in the companion
work [6]) to provide a non-commutative Gel’fand-Naı̆mark duality for unital C*-al-
gebras in terms of “non-commutative spaceoids”, which are “suitable families” of
one-dimensional saturated Fell-bundles1, hence vindicating the validity of the spec-
tral conjecture put forward in previous papers (for example [5, section 6.1]).

In this introductory work, we present the general “algebraic structural setting” on
which the full duality theorem is based, avoiding the highly intricate topological and
uniformity conditions that are unavoidable for the statement of the theorem in its full
generality.

Our approach to non-commutative Gel’fand-Naı̆mark duality builds directly on
a long tradition of developments (starting from J.M.G.Fell [14, 15], J.Tomiyama-
M.Takesaki [29] and, via the celebrated J.Dauns-K.-H.Hofmann theorem [10, 12], cul-
minating in J.Varela duality [30]) on the spectral analysis of C*-algebras via “bundles”
and somehow merges it, via a further spectral analysis of the C*-fibers, with the “con-
volution of pair-groupoid” description of matrix algebras promoted by A.Connes [9,
section I.1].

An equally important source of inspiration for our work comes from the many re-
sults (initiated by R.V.Kadison [19] and firmly established by E.Alfsen-F.Schultz [28,
1, 2]) on functional representations of C*-algebras via uniformly continuous functions
on generalized spectra consisting of their set of pure states equipped with extra struc-
tures: projective Kähler uniform bundles, as in R.Cirelli-A.Manià-L.Pizzocchero [8],
or Poisson manifolds with transition probabilities, as in N.P.Landsman [21, 22].

For us, all the differential geometric ingredients are subsumed by a “uniform cate-
gorical structure”: in detail, when (for each of the C*-fibers mentioned above) a hori-
zontal categorification is performed, substituting the trivial C-bundle over the space of
pure states with a (uniform) Fell line-bundle (with transition amplitudes) over the pair
groupoid, with objects those pure states, a C*-algebra can be recovered essentially as
a “convolution C*-algebra”.

This can be seen somehow as a modest but precise mathematical implementa-
tion (for unital C*-algebras) of the intriguing intuition (supported by the works by
R.Feynman, A.Connes and L.Crane) that quantum physics is a byproduct of “categor-
ical features” (1-arrows between points) of the phase space:

a (uniform) categorical structure on the set of pure states seems respon-
sible for the non-commutative features of the C*-algebra of observables

1These can be seen as a generalization of the special “spaceoids” already utilized as “spectra” of full
Abelian C*-categories in a previous “horizontal categorification” of Gel’fand-Naı̆mark duality [3].
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of a quantum system and for the differential geometric structures on its
corresponding (classical) phase-space.

After these introductory motivations, we proceed now to summarize the content
of the present paper.

In section 2 we quickly introduce some basic terminology and notation on unital
C*-algebras and their representations, recalling the classification results for finite-
dimensional C*-algebras and their unital ∗-homomorphisms. We also describe in re-
marks 2.1 and 2.3 some quite important structural ingredients that will be used later
on in the definition of the spectral spaceoids (without limiting the discussion to finite-
dimensional situations).

Section 3 is dedicated to the first stage of the spectral analysis, namely the discrete
base duality. This result (theorem 3.2) is essentially nothing more than Varela duality
in the special trivial case of finite-dimensional C*-algebras (hence just an intrinsic re-
formulation of Wedderburn theorem for finite C*-algebras). Every finite-dimensional
C*-algebra is spectrally described by a bundle over a finite discrete set (the uni-
tary equivalence classes of its irreps) whose fibers are finite primitive C*-algebras
(i.e. they are isomorphic to matrix algebras). All the notations introduced here (al-
though slightly redundant when only finite-dimensional C*-algebras are around) are
perfectly adequate for the spectral study of arbitrary C*-algebras.2 As in the case of
Gel’fand duality, Varela duality is actually also an adjoint duality, see proposition 3.6.

The most interesting part of our spectral analysis, namely the fiber equivalence, is
the subject of section 4, where each of the previous fibers (non-canonically isomor-
phic to a matrix C*-algebra) gets further spectrally analyzed, following A.Connes’s
idea, as a convolution C*-algebra of a finite pair-groupoid. In order to achieve this
step intrinsically, we have to deal with some unavoidable complications, typically
a gauge freedom in the choice of “orthonormal frames” producing “unitarily conju-
gated” matrices for the same operator. The solution that we adopt in our definition 4.9
of “discrete propagator” is to generalize S.Gudder’s definition of “transition amplitude
space” [18, section 4.5] to situations where the transition amplitudes take values in a
(one-dimensional) C*-category and recover each “fiber C*-algebra” of the previous
bundle (modulo gauge isomorphisms induced between frames by the transition am-
plitudes) as an enveloping C*-algebra of a one-dimensional finite-object C*-category
(one for each orthonormal frame). Essentially every operator in a fiber C*-algebra
corresponds to its “fiber Gel’fand transform” as the collection of all of its matrices
(one for every orthonormal frame) related by unitary conjugation.

Here we actually made a practically irrelevant, but conceptually important, over-
simplification: also in the case of finite non-commutative C*-algebras, (since the fam-
ily of pure-states is not discrete with the topology induced by the weak*-uniformity)
the correct notion of “propagator” would require the usage in definition 4.9 of “uni-

2A non-trivial variant of Varela and Dauns-Hofmann results will be developed in [6], in order to spec-
trally describe unital C*-algebras as bundles, with primitive C*-algebras (with given irreps) as fibers, when
the base space is not Hausdorff.
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form Fell bundles” with a non-trivial uniformity on the base pair-groupoid of pure
states. In the case of finite-dimensional C*-algebras, we can “bypass” this techni-
cal complication, only because the restrictions of the Fell bundle to any orthonormal
frame becomes a C*-category with finite objects and no topological/uniformity effect
is visible in the reconstruction of the C*-algebra (γ-invariant C*-sections are already
uniformly continuous).

The core of the fiber-equivalence is the proof of the adjunction 4.23 among spec-
trum and section functors between the category R of unitary equivalence classes of
primitive C*-algebras and the category 1-W of one-dimensional total discrete propa-
gators. The reflective subcategory R (on which the Gel’fand transforms are isomor-
phisms) consists of primitive C*-algebras that are convolution W*-algebras of a pair
groupoid and hence include all matrix algebras. The reflective subcategory 1-W (on
which the evaluation transforms are isomorphisms) is characterized by a saturation
condition (see the discussion in remark 4.25) for the set of frames of each transition
amplitude space, that essentially states that the group of unitaries of a certain Hilbert
space is acting effectively and transitively on frames.

A “discrete” spectral counterpart of a non-commutative unital C*-algebra, a dis-
crete non-commutative spaceoid, is introduced in definition 4.26 as a finite bundle of
total discrete propagators. A global fiber-adjunction, between the category BFD of
finite bundles (of irrep-classes) of primitive finite C*-algebras and the category EFD

of discrete spaceoids (both with fiberwise isomorphisms), is stated in theorem 4.30.
Imposing fiber by fiber the condition of saturation identifies the reflective subcategory
E FD of discrete non-commutative spaceoids in duality with finite C*-algebras.

The main result of the paper is the final “discrete” adjoint duality theorem 4.33
that is obtained by composing the discrete base adjoint duality 3.6 with the discrete
fiber adjoint equivalence 4.30.

In the short section 5, we explain how the discrete adjoint duality presented here
“extends” the usual commutative Gel’fand-Naı̆mark adjoint duality for finite commu-
tative C*-algebras. Furthermore we describe how discrete non-commutative spaceoids
(as defined in this work) are related to the topological spaceoids originally introduced
as spectra of commutative full C*-categories in [3] (a work that actually constitutes
the ideological precursor of the present non-commutative developments).

The final section 6 ventures beyond the discrete case, describing the main steps
and obstacles (of topological/uniform nature) encountered in the formulation of the
general non-commutative Gel’fand-Naı̆mark duality. Specifically, we briefly explain
how our techniques are immediately capable of supporting a duality at least for unital
C*-algebras A whose structure space Â is Hausdorff and whose irreducible repre-
sentations are all finite-dimensional.3 Then we briefly discuss the topological and
uniformity difficulties in the treatment of the fiber equivalence for a general unital

3In this Hausdorff situation, for the base duality, Varela result essentially reduces to previous theorems
by J.M.G.Fell [14, 15] and the spectra (“scaled” Banach C*-bundles) have been already characterized by
A.J.Lazar [23]; for the fiber-equivalence step, since all the fibers are isomorphic to matrix algebras, our
present analysis does not need any further topological improvement.
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C*-algebra, and the demanding hacks on Varela duality in order to preserve primitive
C*-algebras as fibers also in the case of structure spaces that are not Hausdorff. These
points will be fully covered in the companion paper [6], where each of the algebraic
steps presented here will be suitably “uniformized/topologized”.

The complete result reduces4 to the “discrete case” presented here whenever we
limit consideration to unital C*-algebras A whose structure space Â is topologically
discrete and compact (hence a finite set) and whose irreducible representations are all
finite-dimensional. The potential reader should not feel disappointed by the fact that,
under these quite restrictive conditions, the general non-commutative duality theo-
rem actually collapses to a duality for the completely trivial case of finite-dimensional
C*-algebras (for which a perfectly satisfactory classification is well-known as a con-
sequence of Wedderbun theorem): the ingredients here developed are truly capable
of supporting a satisfactory non-commutative C*-duality (modulo the introduction of
topology and uniformity on the spaceoids). All in all, the time spent on this simplified
formulation is indeed rewarding.

For technical purposes, we also limit for now the study to the category of unital
∗-homomorphisms between unital C*-algebras that preserve irreducible representa-
tions. This is a class of morphisms that (although quite restrictive in general) already
subsumes all the unital ∗-homomorphisms between commutative unital C*-algebras
and hence it is sufficient to successfully recover the usual commutative Gel’fand-
Naı̆mark duality. Again, for the doubtful reader, we anticipate that this technical re-
striction on morphisms is not crucial for the theorem: as soon as suitable “propagator-
bimodules” between non-commutative spaceoids are introduced, one can spectrally
treat any unital ∗-homomorphism between unital C*-algebras as well. This is not done
here just to avoid a long distracting diversion on Morita theory for C*-categories.

2 Preliminaries on (finite-dimensional) C*-algebras

We recall here basic definitions, terminology, notation and some preliminary results.
More details are found, for example in B.Blackadar reference book [7, chapters 2-3].

In this work we will consider only unital C*-algebras over the field of complex
numbers C. A complex C*-algebra A is an associative involutive algebra over C that
is also a Banach space with a norm that is sub-multiplicative: ‖xy‖ ≤ ‖x‖ · ‖y‖ for
x, y ∈ A, and satisfies the C*-property: ‖x∗x‖ = ‖x‖2, for x ∈ A. A C*-algebra is unital
if it has a multiplicative identity 1A and in this case we also assume the normalization
property: ‖1A‖ = 1. The cone of positive elements is denoted by A+ := {x∗x | x ∈ A}.
A W*-algebra is a C*-algebra that, as a Banach space, is the dual of a Banach space.
A finite-dimensional C*-algebra is a C*-algebra that, as a vector space, has finite
dimension.

4The exact form of such identification will be explained in [6]: it involves an inclusion as well as a
forgetful functor.
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A ∗-homomorphism between C*-algebras is a function φ : A1 → A2 such that
φ(xy) = φ(x)φ(y) and φ(x∗) = φ(x)∗, for all x, y ∈ A1. A unital ∗-homomorphism
further satisfies: φ(1A1 ) = 1A2 .

A representation of a (unital) C*-algebra A on a Hilbert spaceH is a (unital) ∗-ho-
momorphism A

$
−→ B(H) into the unital C*-algebra B(H) of continuous linear maps

onH . The representation is irreducible if its commutant

$(A)′ := {T ∈ B(H) | ∀x ∈ A : T ◦$(x) = $(x) ◦ T }

equals C · IdH . Two representations $1 : A → B(H1) and $2 : A2 → B(H2) are
unitarily equivalent it there exists a unitary intertwining operator U : H1 → H2 such
that U ◦$1(x) = $2(x) ◦ U, for all x ∈ A. The set of unitary equivalence classes of
irreducible representations of A will be denoted by XA.

A unital ∗-homomorphism φ : A→ B is irrep-preserving if for every irreducible
representation $ of B, also $ ◦ φ is an irreducible representation of A.

An ideal I in a unital C*-algebra A is a primitive ideal if there is at least one
irreducible representation $ : A → B(H) such that I = Ker$. If {0A} is a primitive
ideal, A is a primitive C*-algebra.5

A state over the unital C*-algebra A is linear function ω : A→ C that is positive,
ω(x∗x) ≥ 1C, normalized, ω(1A) = 1C. The family of states of A is denoted by SA.

The well-known Gel’fand-Naı̆mark-Segal GNS-representation theorem (see for
example B.Blackadar [7, II.6.4]) says that every state ω over a unital C*-algebra A

induces a representation $ω : A → B(Hω) on a Hilbert space Hω with a cyclic6

vector ξω ∈ Hω such that ω(x) = 〈ξω | $ω(x)ξω〉Hω
, for all x ∈ A.

A pure state is a state ω whose GNS-representation $ω is irreducible. The family
of pure states of the C*-algebra A is denoted by PA ⊂ SA.

Composing the GNS-map ω 7→ $ω restricted to the set of pure states PA with the
quotient map π 7→ [$] onto XA, we have a quotient map χA : PA → XA given by
χA : ω→ [$ω].

Remark 2.1. We recall that, given two GNS-representations that are unitarily equiv-
alent [$ω] = [$ρ], a unitary intertwining operator U : Hρ → Hω, i.e. an operator
such that U ◦ $ρ(x) = $ω(x) ◦ U, for all x ∈ A, is not necessarily unique. For pure
states ω, ρ, since their GNS-representations $ω, $ρ are irreducible, any two such in-
tertwining unitaries U,V ∈ B(Hρ;Hω) must satisfy V∗ ◦ U ∈ $ρ(A)′ = C · IdHρ

and
U ◦ V∗ ∈ $ω(A)′ = C · IdHω

and hence there is a unique spatial unital ∗-isomorphism
αωρ : $ρ(A)′′ → $ω(A)′′ of von Neumann algebras,7 independent from the choice of
intertwiners, given by αωρ(T ) := AdU(T ) := U ◦ T ◦ U∗ = AdV (T ).

5By first isomorphism theorem, this is equivalent to A having a faithful irreducible representation.
6The vector ξω ∈ Hω is cyclic for the representation $ : A→ B(Hω) if and only if {$ω(x)(ξω) | x ∈ A}

is dense inHω.
7A von Neumann algebra is a C*-algebra A ⊂ B(H) such that A = A′′ or equivalently, by von Neumann

bicommutant theorem [7, I.9.1.1], that is closed in the weak-operator topology.
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Since αωρ ◦ αρζ = αωζ , α−1
ωρ = αρω and αωω = Id$ω(A)′′ , for o ∈ XA, for all

ω, ρ, ζ ∈ χ−1(o) ⊂ PA, with the terminology recalled later in definition 4.1 and in
footnotes 20 and 33, α is a ∗-functor from the disjoint union of the pair groupoids with
objects pure states in χ−1(o), with values in the groupoid of spatial ∗-isomorphisms of
von Neumann algebras. For all o ∈ XA, we can define an intrinsic W*-algebra A′′o of
“orbits” of the pair groupoid {αωρ | ω, ρ ∈ χ−1(o)} acting on the object von Neumann
algebras {$ω(A)′′ | ω ∈ χ−1(o)} as:

A′′o :=
{
(Tω)o | Tω = αωρ(Tρ), ∀ω, ρ ∈ χ−1(o), Tω ∈ $ω(A)′′, ∀ω ∈ χ−1(o)

}
,

with operations well-defined by

(Tω)∗o := (T ∗ω)o, (Tω)o · (S ω)o := (Tω · S ω)o, (Tω)o + (S ω)o := (Tω + S ω)o.

For finite-dimensional C*-algebras, A′′o , for o ∈ Xo, will always be isomorphic to a
type In factor (matrix algebra), for a certain n ∈ N0.

For o ∈ XA, for every ω ∈ χ−1(o), we define | ω 〉〈ω |:= (| ξω 〉〈 ξω |)o, the one-
dimensional projector | ω 〉〈ω | ∈ A′′o that is the “α-orbit” of the one-dimensional
projector | ξω 〉〈 ξω | ∈ B(Hω), onto the one-dimensional subspace generated by ξω,
the cyclic vector for the ω-GNS representation $ω.

Since for all ω, ρ ∈ PA such that [$ω] = o = [$ρ] ∈ XA, Ker$ω = Ker$ρ we
have a well-defined map o 7→ Ker$o := Ker$ω, from XA to Prim(A), the family of
primitive ideals of A.

We will also denote by $o : A→ A′′o the unital ∗-homomorphism x 7→ ($ω(x))o,
for x ∈ A, and by $o : Ao := A/Ker$o → A′′o its induced injective unital
∗-homomorphism x + Ker$o 7→ $o(x).

We have a bundle over XA with fibers XAo , o ∈ XA, with a canonical section
κA : XA →

⊎
o∈XA

XA0 given by κA : [$ω] =: o 7→ o := [$ω] ∈ XAo . In the
finite-dimensional case, since Ao is isomorphic to a matrix algebra, all the fibers XAo

are singletons. y

We recall the following well-known classification theorem for complex unital
finite-dimensional C*-algebras (see for example D.Farenick [13, theorem 5.20] or
K.Davidson [11, theorem III.1.1]) that is just a special case of Wedderburn’s theo-
rem for semi-simple associative algebras.

Theorem 2.2. Given a finite-dimensional complex C*-algebra A, there exist N ∈ N0
and a unique finite sequence (n1, . . . , nN) of non-decreasing strictly positive natural
numbers such that A is isomorphic to the direct sum

⊕N
k=1 Mnk (C) of complex ma-

trix C*-algebras. It follows that every finite-dimensional (non-trivial) C*-algebra is
unital.

An intrinsic operator-algebraic proof of this theorem is a byproduct of the follow-
ing remark:
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Remark 2.3. The celebrated Gel’fand-Naı̆mark representation theorem (see for ex-
ample B.Blackadar [7, II.6.4.10]) asserts that every (unital) C*-algebra admits an iso-
metric representation. More specifically, if A is a unital C*-algebra, the map

$ :=
⊕
o∈XA

$o : A→
⊕
o∈XA

A′′o

is an isometric ∗-homomorphism because, making use of [7, corollary II.6.4.9], for
every x ∈ A, there exists an irreducible representation $x, and hence [$x] ∈ XA,
such that ‖x‖ = ‖$x(x)‖ = ‖$[$x](x)‖. As a consequence, the unital ∗-homomorphism
x 7→ $(x) :=

⊕
o∈XA

$o(x) ⊂
⊕

o∈XA
A′′o induces an isomorphism of C*-algebras

A ' $(A).
Since, the W*-algebras A′′o , for o ∈ XA, are type I factors (they are all isomorphic

to B(Hρ), whenever [$ρ] = o), they admit a unique trace Tro : A′′o → C and they act
(reducibly) on the canonical Hilbert-Schmidt space

L2(A′′o ) := {T ∈ A′′o | Tr(T ∗T ) < +∞}.

With a slight abuse of notation, denoting by$ : A→ B
(⊕

o∈XA
L2(A′′o )

)
the induced

representation of the C*-algebra A on the Hilbert space
⊕

o∈XA
L2(A′′o ), we obtain

$(A)′′ =
⊕

o∈XA
A′′o .

Since by von Neumann bicommutant theorem [7, I.1.9.1] $(A) is weakly dense
in $(A)′′, in the finite-dimensional case we have A ' $(A) = $(A)′′ =

⊕
o∈XA

A′′o
and hence XA must be finite. y

There is also a characterization, via Bratteli diagrams (up to the previous iso-
morphisms with direct sums of matrix algebras), of all the unital ∗-homomorphisms
between finite-dimensional C*-algebras (see K.Davidson [11, lemma III.2.1]).

Proposition 2.4. There is a bijective correspondence between the family of equiv-
alence classes under inner automorphisms8 of unital ∗-homomorphisms of finite-di-
mensional C*-algebras φ : A→ B, where A '

⊕N
j=1 Mn j (C) and B '

⊕M
k=1 Mmk (C),

for (mk)M
k=1, (n j)N

j−1 non-decreasing finite sequences, and the family of multiplicity ma-
trices [φk j] ∈ MM×N(C) of non-negative integers such that mk =

∑N
j=1 φk j · n j, for all

j = 1, . . . ,M. Irrep-preserving unital ∗-homomorphisms correspond to multiplicity
matrices with rows containing a single non-zero entry equal to 1.

Both of the previous results can actually be intrinsically reformulated into the
subsequent duality result 3.2 that is an immediate byproduct (in the case of finite-
dimensional C*-algebras and irrep-preserving ∗-homomorphisms) of Varela duality
for arbitrary C*-algebras [30], itself an application of the celebrated Dauns-Hofmann
theorems [10, 12].

8An automorphism (i.e. an invertible unital ∗-homomorphism) φ : A → A of a unital C*-algebra A is
inner if there exists u ∈ A unitary (i.e. u∗u = 1A = uu∗) such that φ(x) = u∗xu, for all x ∈ A.
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3 Discrete Base Duality
For all the basic notions of category theory used in this paper: category, functor, nat-
ural transformation, adjunction, equivalence, we refer to any standard text (for exam-
ple T.Leinster [24] or E.Riehl [27]).

We denote by AFD the category of irrep-preserving unital ∗-homomorphisms
of finite-dimensional C*-algebras, whose objects are finite-dimensional (non-trivial)
C*-algebras and whose morphisms are the unital ∗-homomorphisms that are irrep-
preserving (composition being the usual composition of functions and identities mor-
phisms the usual identity ∗-isomorphisms).

We denote by BFD the category of fibrewise ∗-isomorphisms of bundles of
finite-dimensional primitive C*-algebras over finite sets defined as follows:

• objects of BFD are bundles F
θ
−→ X with a finite set X as base space and fibers

Fo := θ−1(o), for o ∈ X, that are primitive finite-dimensional C*-algebras (hence
isomorphic to matrix algebras).

• morphisms of BFD consist of pairs of maps (F1, θ1,X1)
(λ,Λ)
−−−→ (F2, θ2,X2),

where λ : X1 → X2 and Λ : λ•(F2) → F1 is a fiber-preserving map, defined
on the total space of the λ-pull-back9 (λ•(F2), (θ2)λ,X1) of (F2, θ2,X2), such
that, for all o ∈ X1, its o-fiber restriction Λo : F2

λ(o) → F1
o is a ∗-isomorphism.10

• given two morphisms (F1, θ1,X1)
(λ2,Λ2)
−−−−−→ (F2, θ2,X2)

(λ1,Λ1)
−−−−−→ (F3, θ3,X3), their

composition is defined by (λ1,Λ1) ◦ (λ2,Λ2) := (λ1 ◦ λ2,Λ2 ◦ λ
•
2(Λ1) ◦ ζθ

3

λ1,λ2
),

where ζθ
3

λ1,λ2
: (λ1 ◦ λ2)•(F3) → λ•2 ◦ λ

•
1(F3) is the usual canonical isomorphism

of pull-backs and λ•2(Λ1) : λ•2 ◦ λ
•
1(F3) → λ•2(F2) is the λ2-pull-back of the

morphism Λ1 : λ•1(F3)→ F2 of bundles over X2.

• identity morphisms, for every (F, θ,X), are given by ι(θ) := (IdX, ζF), where
ζF : Id•X(F)→ F is the canonical isomorphism of F with its IdX-pull-back.

9A λ-pull-back of the bundle (F2, θ2,X2), with λ : X1 → X2, is by definition a commuting square
λ ◦ θ = θ2 ◦Λ, where (F, θ,X1) is a bundle over X1 and Λ : F → F2 is a fibrewise morphism, such that the
following universal factorization property is satisfied: for any other such commuting square λ◦θ′ = θ2 ◦Λ′,
for a bundle (F′, θ′,X1) and a fibrewise morphism Λ′ : F′ → F2, there exists a unique fibrewise morphism
Θ : F′ → F such that θ ◦ Θ = θ′ and Λ ◦ Θ = Λ′.

The standard λ-pull-back λ•(θ2) of the bundle θ2 is here the bundle (λ•(F2), (θ2)λ,X1) having total
space λ•(F2) :=

⋃
o∈X1 F2

λ(o) × {o}, with fibers F2
λ(o) × {o}, for o ∈ X1, and with fibrewise morphism

λ(θ2) : λ•(F2)→ F2 given by λ(θ2)
o : ( f , o) 7→ f , for all f ∈ F2

λ(o), for o ∈ X1; hence we have the commuting

square λ(θ2) ◦ θ2 = λ ◦ (θ2)λ.
We make free use of the fact the standard λ-pull-back gives a covariant functor λ• from the category of

fibrewise morphisms of bundles over X2 to the category of fibrewise morphisms of bundles over X1.
10Although in the specific case of fibrewise isomorphisms the two notions are indistinguishable, in view

of subsequent generalizations and direct continuity with previous works, we prefer to use here this notion
of geometric morphism between bundles (a term motivated by the similarity with the situation in topos
theory), rather than the more familiar definition of morphism via commuting squares i.e. pairs (F, f ) with
θ2 ◦ F = θ1 ◦ f .
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Remark 3.1. Given a bundle (F, θ,X) ∈ B0
FD, we can define the bundle (Xθ, [θ],X)

whose o-fibers (Xθ)o := [θ]−1(o), for all o ∈ X, are the equivalence classes XFo of
irreducible representations of Fo. Since the fiber Fo is a primitive finite-dimensional
C*-algebra, we have a unique equivalence class of irreducible representations of Fo

and hence a canonical bijection κθ : X→ Xθ. y

We now define a contravariant base section functor ΓFD : BFD → AFD:

• to every object (F, θ,X) in BFD we associate the family

ΓFD(θ) := {σ : X→ F | θ ◦ σ = IdX}

of sections of the bundle θ and we note that ΓFD(θ) is a finite-dimensional
C*-algebra with the following supremum norm and pointwise-defined opera-
tions, for all o ∈ X, α ∈ C, σ, τ ∈ ΓFD(θ):

(σ + τ)o := σo +Fo τo, (α · σ)o := α ·Fo σo, (σ∗)o := (σo)∗Fo

(σ • τ)o := σo •Fo τo, ‖σ‖ := max
o∈X
‖σo‖Fo .

The C*-algebra ΓFD(θ) is naturally isomorphic to
⊕

o∈X Fo and, for all o ∈ X,
Fo is (non canonically) isomorphic to a unique matrix algebra.

• to a morphism (F1, θ1,X1)
(λ,Λ)
−−−→ (F2, θ2,X2) in BFD we associate the map of

finite-dimensional C*-algebras ΓFD
(λ,Λ) : ΓFD(θ2)→ ΓFD(θ1) defined by

ΓFD
(λ,Λ)(σ) := Λ ◦ λ•(σ) ◦ (IdX2 )−1

λ ,

for all σ ∈ ΓFD(θ2), where λ•(σ) : λ•(X2) → λ•(F2) is the λ-pull-back of the
section σ : X2 → F2 and (IdX2 )λ : λ•(X2) → X1 is a homeomorphism (as total
spaces of bundles over X1).

A straightforward calculation shows that ΓFD
(λ,Λ) : ΓFD(θ2) → ΓFD(θ1) is a unital

∗-homomorphism of finite-dimensional C*-algebras and is irrep-preserving.11

A direct calculation gives the contravariant functoriality of ΓFD:

ΓFD
ι(θ) = ΓFD

(IdX,ηF) = IdΓFD(θ) and ΓFD
(λ1,Λ1)◦(λ2,Λ2) = ΓFD

(λ2,Λ2) ◦ ΓFD
(λ1,Λ1).

We introduce now a contravariant base spectrum functor ΣFD : AFD → BFD:

• to a finite-dimensional C*-algebra A in AFD, we associate its spectral bundle
of finite-dimensional primitive C*-algebras ΣFD(A) := (FA, θA,XA), where:

11Since ΓFD(θ1) =
⊕

o∈X F1
o , an irreducible representation π : ΓFD(θ1) → B(H) provides an isomor-

phism between the simple finite-dimensional algebra B(H) and a unique fiber F1
oπ and hence π ◦ ΓFD

(λ,Λ) is
an isomorphism between B(H) and F2

λ(oπ).
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– XA is the set12 of unitary equivalence classes of irreducible representa-
tions of A

– FA :=
⊎

[$]∈XA

A
Ker$ is the disjoint union of finite-dimensional primitive

C*-algebras of the form (FA)o := A/(Ker$), for o ∈ XA, where $ ∈ o is
an irreducible representation.13

– θA : FA → XA is the projection map x + Ker π 7→ [π], with fibers (FA)o,
for all o ∈ XA.

• to every morphism (irrep-preserving unital ∗-homomorphism of finite-dimen-

sional C*-algebras) A1
φ
−→ A2 in AFD, we associate the morphism of spectral

bundles ΣFD
φ := ΣFD(A2)→ ΣFD(A1) in BFD, given by ΣFD

φ := (λφ,Λφ), where:

– λφ : XA2 → XA1 is the quotient14 (under unitary equivalence relation) of
the φ-pull-back of irreps $ 7→ $ ◦ φ, for $ irrep of A2.

– Λφ : λ•φ(FA1 )→ FA2 is fibrewise defined, as follows:15

(Λφ)o : (FA1 )λφ(o) → (FA2 )o, for all o ∈ XA2 ,

(Λφ)o : x + Ker($ ◦ φ) 7→ φ(x) + Ker$, for any x ∈ A1.

A direct calculation shows that ΣFD
IdA = (IdXA

, ηFA
) and ΣFD

φ◦ψ = ΣFD
ψ ◦ ΣFD

φ , hence
establishing the contravariant functoriality of ΣFD.

The following result is just a very trivial restriction of J.Varela’s duality [30] for
C*-algebras,16 for convenience of the reader we recall a short proof.

Theorem 3.2. There is duality17 between the pair of contravariant functors

AFD

ΣFD

))

ΓFD
ii BFD .

12Notice that for a finite-dimensional C*-algebra this set is always finite (see remark 2.3).
13Notice that if [$1] = [$2] ∈ XA, we have Ker$1 = Ker$2 hence the fiber (FA)o = A/Ker$, for

$ ∈ o is well-defined. Furthermore, since A is finite-dimensional, for every irrep $ : A → B(H), H is
necessarily finite-dimensional and we have $(A) = $(A)′′ = (C · IdH )′ = B(H) and hence we see that
A/Ker$ ' B(H) is primitive finite-dimensional.

14Notice that the quotient map is well-defined: every unitary U intertwining the irreducible representa-
tions $2 and $2 of A2, is also a unitary intertwining the irreducible representations $1 ◦ φ and $2 ◦ φ.

15The map (Λφ)o is well-defined, since φ(Ker($ ◦ φ)) ⊂ Ker$, for all irrep $ ∈ o. Furthermore (Λφ)o
is a unital ∗-isomorphism of primitive finite-dimensional C*-algebras, because φ is irrep-preserving and
hence the fibers A1/(Ker$ ◦ φ) and A2/(Ker$) are both isomorphic to B(H$), for a finite-dimensional
Hilbert spaceH$, irreducible under $.

16Varela duality holds without any restriction to irrep-preserving and fibrewise ∗-isomorphic morphisms.
These conditions are here imposed in view of a further spectral analysis of the primitive C*-algebras fibers.

17A duality is a contravariant equivalence: a pair of contravariant functors that are inverses, modulo
natural isomorphisms.
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The base Gel’fand transform GFD
A : A → ΓFD ◦ ΣFD(A), is the natural iso-

morphism of C*-algebras given by x 7→ x̂ ∈ ΓFD(θA), for x ∈ A, where we define
x̂ : o 7→ x + Ker$ ∈ (FA)o, with [$] = o ∈ XA.

The base evaluation transform EFD
θ := (ηθ,Ωθ), is the natural isomorphism of

bundles of primitive finite-dimensional C*-algebras

E
FD
θ : (F, θ,X)

(ηθ , Ωθ)
−−−−−→ ΣFD ◦ ΓFD(F, θ,X) := (FΓFD(θ), θΓFD(θ),XΓFD(θ)) where :

• ηθ : X → XΓFD(θ) is defined, for o ∈ X, as ηθ : o 7→ [evo], with evo : σ 7→ σo,
for all σ ∈ ΓFD(θ), where [evo] ∈ XΓFD(θ) denotes the unique unitary equiva-
lence class of irreps determined by the irrep-preserving unital ∗-homomorphism
evo : ΓFD(θ)→ Fo;18

• Ωθ :=
⊎

o∈X Ωθ
o : (ηθ)•(FΓFD(θ)) → F, with Ωθ

o : (ηθ)•(FΓFD(θ))o → Fo is given by

the map Ωθ
o : ΓFD(θ)

Ker(ηθ(o)) → Fo, well-defined as follows: σ + Ker(ηθ(o)) 7→ σo, for

all o ∈ X.

Proof. The base Gel’fand transform GFD
A : A → ΓFD ◦ ΣFD(A) is a unital ∗-homo-

morphism in A 1
FD:

(x̂ + y)o = x + y + Ker$o = (x + Ker$o) + (y + Ker$o) = x̂o + ŷo =
(̂
x + ŷ

)
o,

(x̂y)o = xy + Ker$o = (x + Ker$o)(y + Ker$o) = x̂ôyo =
(̂
x • ŷ

)
o,

(x̂∗)o = x∗ + Ker$o = (x + Ker$o)∗ = ((̂x)o)∗ = ((̂x)∗)o,

(̂1A)o = 1A + Ker$o = 1Ao = (1ΓFD◦ΣFD(A))o, ∀x, y ∈ A, ∀o ∈ XA.

By Gel’fand-Naı̆mark theorem (see [7, corollaries II.6.4.9, II.6.4.10]), as detailed in
remark 2.3: ‖̂x‖ΓFD◦ΣFD(A) = maxo∈XA

‖x + Ker$o‖Ao = maxo∈XA
‖$o(x)‖Ao = ‖x‖A,

so GFD
A is norm preserving and hence injective.

Again, from remark 2.3, for finite-dimensional C*-algebras, $ : A→
⊕

o∈XA
A′′o

is the isometric ∗-isomorphism $ : x 7→ ⊕o∈XA
$o(x) = ⊕o∈XA

x̂o, x ∈ A.
The surjectivity of GFD follows immediately considering, for an arbitrary sec-

tion σ ∈ ΓFD ◦ ΣFD(A), the corresponding ⊕o∈XA
σo ∈

⊕
o∈XA

A′′o and checking that
x := $−1(⊕o∈XA

σo) ∈ A has base Gel’fand transform σ, since x̂o = σo for all o ∈ XA.

Finally, the naturality of GFD is obtained, for φ : A1 → A2, x ∈ A1, o ∈ XA2 ,
from this calculation:

(ΓFD ◦ ΣFD)φ(̂x)o = ΓFD
(λφ,ΛΦ) (̂x)o = ΛΦ

o ◦ (λφ)• (̂x) ◦ (IdXA1
)−1
λφ (o)

= ΛΦ
o (x + Ker($o ◦ φ)) = φ(x) + Ker($o) = φ̂(x).

18Since Fo is a primitive finite-dimensional C*-algebra, it uniquely determines a unitary equivalence
class of irreps.
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For a bundle (F, θ,X) of finite dimensional primitive C*-algebras over a finite set,
the unital C*-algebra ΓFD(θ) coincides with the direct sum

⊕
o∈X Fo. Since, for all

o ∈ X, Fo is simple (being isomorphic to a finite-dimensional matrix algebra) the
only ∗-ideals of ΓFD(θ) are of the form

⊕
o∈Y Fo, for Y ⊂ X. For any irreducible

representation $ of ΓFD(θ), we have that Ker$ is a maximal ideal and hence there

exists an o ∈ X such that ΓFD(θ)
Ker$ is isomorphic to Fo. Hence [π] = ηθ(o) and the

surjectivity of ηθ : X → XΓFD(θ) is obtained. Since, for o1, o2 ∈ X, [evo1 ] = [evo2 ] if
and only if there is an isomorphism ψ : Fo1 → Fo2 such that ψ ◦ evo1 (σ) = evo2 (σ),
for all σ ∈ ΓFD(θ), we obtain o1 = o2 (otherwise any section σ with σo1 = 0Fo1

and
σo2 = 1Fo2

would lead to contradiction) and hence the injectivity and bijectivity of ηθ.

For all o ∈ X, the map Ωθ
o : (FΓFD(θ))ηθ(o) → Fo is a unital ∗-homomorphism: for

all σ, τ ∈ ΓFD(θ),

Ωθ
o(σ + τ + Ker ηθ(o)) = (σ + τ)o = σo + τo = Ωθ

o(σ) + Ωθ
o(τ),

Ωθ
o(σ • τ + Ker ηθ(o)) = (σ • τ)o = σo •Fo τo = Ωθ

o(σ) •Fo Ωθ
o(τ),

Ωθ
o(σ∗ + Ker ηθ(o)) = (σ∗)o = (σo)∗Fo = Ωθ

o(σ)∗Fo ,

Ωθ
o(1ΓFD(θ) + Ker ηθ(o)) = (1ΓFD(θ))(o) = 1Fo .

Since, for all f ∈ Fo, we have the section δ f ∈ ΓFD(θ), defined as δ f
o′ = 0Fo′

whenever o′ , o and δ f
o := f , and Ωθ

o(δ f + Ker ηθ(o)) = f , we obtain the surjectivity
of Ωθ

o. Since Ωθ
o(σ + Ker ηθ(o)) = 0Fo implies σo = 0Fo and hence σ ∈ Ker(ηθ),

the injectivity follows and we see that Ωθ : (ηθ)•(FΓFD(θ)) → F is a fibrewise unital
∗-isomorphism. As a consequence (ηθ,Ωθ) is an isomorphism in BFD.

Finally, for the naturality of EFD, for any morphism (F1, θ1,X1)
(λ,Λ)
−−−→ (F2, θ2,X2),

we must prove that (λΓ(λ,Λ) ,ΛΓ(λ,Λ) ) ◦ (ηθ
1
, Ωθ1

) = (ηθ
2
, Ωθ2

) ◦ (λ,Λ) i.e.:

λΓ(λ,Λ) ◦ ηθ
1

= ηθ
2
◦ λ,

Ωθ1
◦ (ηθ

1
)•(ΛΓ(λ,Λ) ) ◦ ζΣ◦Γ(θ2)

λΓ(λ,Λ) , ηθ
1 = Λ ◦ λ•(Ωθ2

) ◦ ζΣ◦Γ(θ2)

ηθ
2
, λ

.

For the first equation, for every o ∈ X1, ηθ
2

λ(o)
is the unique irreducible represen-

tation [evθ
2

λ(o)] associated with the unital ∗-homomorphism of ΓFD(θ2) onto the fiber

F
Γ(θ2)
λ(o) ; ηθ

1

o
is the unique irreducible representation [evθ

1

o ] associated with the unital

∗-homomorphism of ΓFD(θ1) onto the fiber FΓ(θ1)
o . Since λ

Γ(λ,Λ)
o : FΓ(θ1)

o → F
Γ(θ2)
λ(o) is a

unital ∗-isomorphism, these two classes of irreps necessarily coincide.
For the second equation, for o ∈ X1 and for all σ ∈ ΓFD(θ2), evaluating both terms

on the element σ+ Ker(λΓ(λ,Λ) ◦ ηθ
1
) = σ+ Ker(ηθ

2
◦λ) we obtain: Λ ◦σ ◦λ(o) ∈ E1

o. �
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Remark 3.3. For a finite-dimensional C*-algebra A, the center Z(A) is isomorphic
(via the base Gel’fand transform) to the commutative unital C*-algebra of sections of
the trivial complex line-bundle over XA, hence the usual Gel’fand spectrum Sp(Z(A))
is homeomorphic to the (discrete compact) space XA that also coincides with the
usual structure space Â (the set XA equipped with the quotient topology induced by
the weak*-topology of PA under the map ω 7→ [ω]) and with the primitive spectrum
Prim(A) (the set of primitive ideals) equipped with the hull kernel topology. y

Varela duality, like the original Gel’fand-Naı̆mak duality, is an adjoint duality.

Remark 3.4. We recall that, in the case of contravariant functors, C

Ψ
&&

Φ

ff D the

usual notions of left-right Ψ a Φ and right-left Ψ ` Γ adjuctions are replaced by right-
right a Ψ Φ ` and left-left ` Ψ Φ a adjunctions (see for example [27, section 4.3]).

More specifically, if C

Ψ
&&

Φ

ff D is a covariant adjunction Ψ a Φ with unit

η : IdC → Φ ◦ Ψ and co-unit ε : Ψ ◦ Φ → IdD , passing to the opposite category

D◦, we get a contravariant right-right adjunction C

◦Ψ ''

Φ◦

ff D◦ , a ◦Ψ Φ◦ `, with two

units η : IdC → Φ◦ ◦ ◦Ψ and ε◦ : IdD◦ → ◦Ψ ◦ Φ◦.
Similarly, passing to the dual category C ◦, we obtain a contravariant left-left ad-

junction C ◦
Ψ◦

&&

◦Φ

gg D , ` Ψ◦ ◦Φ a with two co-units η◦ : ◦Φ ◦ Ψ◦ → IdC ◦ and

ε : Ψ◦ ◦ ◦Φ → IdD . Notice, that considering both the opposite categories we obtain a

covariant adjunction C ◦
◦Ψ◦ ((

◦Φ◦

gg D◦ , ◦Ψ◦ ` ◦Φ◦ with co-unit η◦ : ◦Φ◦ ◦ ◦Ψ◦ → IdC ◦

and unit ε◦ : IdD◦ → ◦Ψ◦ ◦ ◦Φ◦.
In an adjoint equivalence19 we necessarily have (Σ a Γ)⇔ (Σ ` Γ).
A duality is a contravariant equivalence, hence by an adjoint duality we mean a

duality between contravariant functors whose natural isomorphisms satisfy adjunction
triangle identities. In an adjoint duality (a Γ Σ `)⇔ (` Γ Σ a). y

Remark 3.5. Notice that the actual choice of the “direction” for geometric morphisms
(λ,Λ) ∈ B1

FD of bundles in BFD is essentially dictated by backward compatibility
with the usual Gel’fand-Naı̆mark duality in the commutative C*-algebraic case. Tak-
ing the opposite direction (hence using the opposite category B◦

FD) would result in
covariant functors ΣFD◦ and ◦ΓFD and an equivalence of categories. y

19An adjoint equivalence is an equivalence between covariant functors whose natural isomorphisms sat-
isfy adjunction triangle identities.
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Proposition 3.6. The Varela duality in theorem 3.2 is an adjoint right-right duality
(a ΣFD ΓFD `) with units the base Gel’fand and base evaluation transform isomor-
phisms. Equivalently we have an adjoint left-left duality (` ΣFD ΓFD a) with co-units
(GFD)−1 : ΓFD ◦ ΣFD → IdAFD and (EFD)−1 : ΣFD ◦ ΓFD → IdBFD the inverses of the
base Gel’fand and base evaluation transform isomorphisms.

Proof. In order to avoid adjoint triangle identities for contravariant cases, we make use
of remark 3.5 and the notation in remark 3.4, passing to the opposite category B◦

FD
and considering the covariant functors ΓFD◦ : B◦

FD → AFD and ◦ΣFD : AFD → B◦
FD.

The induced natural transformation isomorphisms GFD : IdAFD → ΓFD◦ ◦ ◦ΣFD and
E

FD◦ : ◦ΣFD ◦ΓFD◦ → IdB◦
FD

satisfy the adjunction triangle identities for the covariant
adjoint equivalence ◦ΣFD a ΓFD◦ and hence, by remark 3.4 GFD and EFD are the two
unit isomorphisms of the right-right adjoint duality (a ΣFD ΓFD `).

From remark 3.4 we also have that (GFD)−1 : ΓFD ◦ ΣFD → IdAFD and that
(EFD)−1 : ΣFD ◦ ΓFD → IdBFD are the two co-unit isomorphisms for the left-left
adjoint equivalence (` ΣFD ΓFD a). �

4 Discrete Fiber Equivalence and Discrete Duality
In the next step, we proceed beyond Varela duality, making a further spectral anal-
ysis of the fibers of our bundles (that for objects in BFD are just primitive finite-
dimensional C*-algebras and hence type In factors, for some fiber-depending n ∈ N0)
in terms of 1-C*-categories. This essentially amounts to an intrinsic description of
each fiber (a matrix algebra) as a convolution C*-algebra of a finite pair groupoid, an
idea that is quite well-known in non-commutative geometry [9, section 1.1].

Although everything is still treated in the discrete case (without topologies and
uniformities), most of the material here presented is developed at a level of gen-
erality well beyond the immediate requirements for a duality for finite-dimensional
C*-algebras; the assumption of finite-dimensionality becomes relevant starting from
definition 4.26.

Before proceeding, we recall some basic properties of C*-categories (for further
details, we refer to P.Ghez-R.Lima-J.Roberts [17] and P.Mitchener [26]).

Definition 4.1. A C*-category C is a strict involutive (dagger) 1-category20 (C, ◦, ∗, ι)
equipped with:

20An involutive category is a 1-quiver C0 s
←− C1 t

−→ C0 (having source map s and target map t), with
identity ι : C0 → C1, composition ◦ : C1 ×◦ C

1 := {(x, y) ∈ C1 × C1 | s(x) = t(y)} → C1, and involution
∗ : C1 → C1, that satisfy the structural requirements s(ι(A) = A = t(ι(A)), for all A ∈ C0, s(x∗) = t(x),
t(x∗) = s(x), for all x ∈ C1, s(x◦y) = s(y), t(x◦y) = t(x), for all (x, y) ∈ C1×◦C

1, and the following algebraic
axioms of: associativity x◦(y◦z) = (x◦y)◦z, for all (x, y), (y, z) ∈ C1×◦C

1, unitality x◦ι(s(x)) = x = ι(t(x))◦x,
for all x ∈ C1, involutivity (x∗)∗ = x, for all x ∈ C1, and anti-multiplicativity (x ◦ y)∗ = y∗ ◦ x∗, for all
(x, y) ∈ C1 ×◦ C

1. A groupoid is an involutive category C where all morphisms x ∈ C are isomorphisms
(invertible) with x∗ = x−1 and a pair groupoid is a groupoid with all the hom-sets CAB := HomC(B, A) of
cardinality one. The bundle map (t, s) : C → C0 × C0, with fibers CAB, is a ∗-functor from the involutive
category C to the pair groupoid C0 × C0 with objects C0.
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• an addition + : C1 ×+ C1 :=
⋃

A,B∈C0 CAB → C1 and a scalar multiplication
· : C×C1 → C1 and such that s(α·x) = s(x), t(α·x) = t(x), for all (α, x) ∈ C×C1,
s(x) = s(x + y) = s(y), t(x) = t(x + y) = t(y), for all (x, y) ∈ C1 ×+ C1, making
the hom-sets CAB := HomC(B, A), for all A, B ∈ C0, C-vector spaces (CAB,+, ·)
in such a way that involutions are conjugate-linear:

(α · x + y)∗ = α · x∗ + y∗,

for all (x, y) ∈ C1 ×+ C1, for all α ∈ C, and compositions bilinear:

(x + y) ◦ (α · z) = α · (x ◦ z) + α · (y ◦ z),
(α · w) ◦ (x + y) = α · (w ◦ x) + α · (z ◦ y),

for all (w, (x, y), z) ∈ C1 ×◦ (C1 ×+ C1) ×◦ C1, for all α ∈ C.

• a norm function ‖ · ‖ : C1 → R such that, for every pair of objects A, B ∈ C0, the
hom-sets CAB := HomC(B, A) are Banach spaces; the norm is sub-multiplica-
tive: ‖x ◦ y‖ ≤ ‖x‖ · ‖y‖, for all (x, y) ∈ C1 ×◦ C

1; satisfies the C*-property:
‖x∗ ◦ x‖ = ‖x‖2, for all x ∈ C1; and finally the positivity holds: x∗ ◦ x is positive
in the C*-algebra21 Cs(x)s(x), for all x ∈ C1.

A C*-category is full if CAB ◦ CBC = CAC , for all A, B,C ∈ C0. 22 The C*-category C

is one-dimensional if CAB is 1-dimensional, for all A, B ∈ C0.23 The C*-category C is
finite-dimensional if all the hom-sets CAB are finite-dimensional, for all A, B ∈ C0. A
finite-dimensional C*-category C is said to be finite if its family of objects C0 is finite.
A W*-category is a C*-category C such that, for all A, B ∈ C0, the hom-set CAB, as a
Banach space, is the dual of a Banach space (its pre-dual CAB∗). A finite-dimensional
C*-category is a W*-category.

A covariant ∗-functor C1
(Φ0,Φ1)
−−−−−→ C2 between two C*-categories (C j, ◦ j, ∗ j, ι j),

j = 1, 2, is a covariant functor24 such that Φ1(x∗1 ) = Φ1(x)∗2 , for every x ∈ C1
1.

Remark 4.2. There is functor A
U
−→ C , from the category A of unital ∗-homomor-

phisms between unital C*-algebras to the category C of ∗-functors between small
C*-categories, that to every unital C*-algebra A associates the C*-category U(A)

21From the previous axioms it already follows that, for all A, B ∈ C0, CAA is a C*-algebra, and CAB is a
CAA − CBB-bimodule.

22This condition is equivalent to require that all the bimodules CAB are CAA − CBB, imprimitiv-
ity Hilbert C*-bimodules (see footnote 25), when equipped with the two left/right inner products
•〈x | y〉 := x ◦ y∗ ∈ CAA and 〈x | y〉• := x∗ ◦ y ∈ CBB, for all x, y ∈ CAB, for all A, B ∈ C0. This means
that •〈x | y〉 · z = x · 〈y | z〉•, for all x, y, z ∈ CAB (a condition that is always satisfied for hom-sets in a
C*-category) and the following fullness condition: CAB ◦ CBA = CAA, CBA ◦ CAB = CBB.

23A one-dimensional C*-category is always full, since ‖x∗ ◦ x‖ = ‖x‖2 , 0, for any 0 , x ∈ CAB implies
that CAB ◦ CBA = CAA.

24Recall that a covariant functor between two categories consists of a pair of maps Φ0 : C0
1 → C0

2 and
Φ1 : C1

1 → C1
2 such that s2 ◦ Φ1 = Φ0 ◦ s1, t2 ◦ Φ1 = Φ0 ◦ t1, Φ1 ◦ ι1 = ι2 ◦ Φ0 and Φ1 ◦ ◦1 = ◦2 ◦ Φ1.
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specified as follows: the objects of U(A) are the Hermitian projections p ∈ A, with
p = p2 = p∗; given two objects p, q, morphisms in U(A) from p to q are given by
(q, x, p), with x ∈ A; identities in U(A) are given by ι(p) := (p, 1A, p), composition
in U(A) is defined as (p3, x, p2) ◦ (p2, y, p1) := (p3, xp2y, p1); involutions in U(A) are
(p, x, q)∗ := (q, x∗, p) and ‖(q, x, p)‖ := ‖qxp‖. y

Definition 4.3. A unital C*-enveloping algebra of a C*-category C, is a unital C*-al-
gebra C*(C) with a ∗-functor ηC : C→ U(C*(C)) that satisfies the following universal
factorization property: for any ∗-functor φ : C → U(A) for a unital C*-algebra A,
there exists a unique unital ∗-homomorphism φ : C*(C)→ A such that φ = U(φ) ◦ ηC.

Two different C*-enveloping algebras of the same C*-category are necessarily iso-
morphic via a unique ∗-isomorphism factorizing their defining ∗-functors. We provide
here a sketch of a proof of the existence of a C*-enveloping algebra for a C*-category
C, (for other constructions see [17, 26]).

Proposition 4.4. A small C*-category C has a canonically associated unital envelop-
ing C*-algebra C*(C).

Proof. Consider
⊕

A∈C0 CAA := {(xAA) ∈
�

A∈C0 CAA | supA∈C0 ‖xAA‖ < ∞}, the di-
rect sum of the diagonal C*-algebras of the C*-category, that is a C*-algebra with
componentwise operations and norm defined by ‖(xAA)‖ := supA∈C0 ‖xAA‖CAA . Con-
sidering HC := {(xAB) ∈

�
A,B∈C0 CAB | (

∑
B∈C0 (x∗)AB ◦ xBA)A∈C0 ∈

⊕
A∈C0 CAA}, we

see that HC is a right Hilbert C*-module25 over the C*-algebra
⊕

A∈C0 CAA when
equipped with the right inner product given by 〈x | y〉• :=

∑
B∈C0 (x∗)AB ◦ yBA. Every

element x ∈ C has a well-defined left action on HC given by ηCx (ξ) := x ◦ ξ. The map
ηC : C → L(HC) is a ∗-functor into the C*-algebra of adjointable operators on the
Hilbert C*-module HC. We define the C*-algebra C*(C) to be the unital C*-algebra
generated by ηC(C) ⊂ L(HC) and we still denote by ηC : C → C*(C) the ∗-functor
with values into C*(C). We can finally verify that since φ : C→ A is a ∗-functor, and
hence ‖φ(x)‖ ≤ ‖x‖, there is a unique unital ∗-homomorphism φ : C*(C) → A that
satisfies the universal factorization property. �

Remark 4.5. There is a perfectly parallel “W*-version” of the previous constructions.

Exactly as in remark 4.2, we have a functor A ′′
U′′

−−→ C ′′, from the category A ′′ of
σ-weakly continuous26 unital ∗-homomorphism between W*-algebras to the category
C ′′ of σ-weakly continuous ∗-functors between small W*-categories.

25 We recall (see for example [7, section II.7]) that a right Hilbert C*-module MA over a unital C*-al-
gebra A is a right unital A-module equipped with an A-valued inner product 〈· | ·〉A : M × M → A

that is A-linear in the second variable, Hermitian 〈x | y〉∗
A

= 〈y | x〉A for x, y ∈ M, non-degenerate
〈x | x〉A = 0A ⇒ x = 0M, positive 〈x | x〉A ∈ A+ := {a∗a ∈ A | a ∈ A} for x ∈ M, and complete in
the norm ‖x‖M := ‖〈x | x〉A‖

1/2
A

. An map T : M → M is adjointable if, for a certain (necessarily unique)
map T ∗ : M → M, for all x, y ∈ M, 〈x | T (y)〉A = 〈T ∗(x) | y〉A. Adjointable maps are necessarily linear
continuous and they constitute a C*-algebra L(MA).

26The σ-weak topology on a W*-algebra R is the weak*-topology induced by its pre-dual space R∗.



120 Discrete Non-commutative Gel’fand-Naı̆mark Duality

A W*-enveloping algebra of a W*-category R, is a W*-algebra W*(R) with a
σ-weakly continuous ∗-functor ηR : R→ U′′(W*(R)) that satisfies the following uni-
versal factorization property: for any σ-weakly continuous ∗-functor φ : R→ U′′(S)
for a W*-algebra S, there exists a unique σ-weakly continuous unital ∗-homomor-
phism φ : W*(R)→ S such that φ = U′′(φ) ◦ ηR.

A construction of the W*-enveloping algebra of a W*-category via inductive limits
is given in [17]. An explicit construction of the W*-enveloping algebra of a W*-cat-
egory can also be obtained along the same lines of proposition 4.4, considering the
W*-algebra WR :=

⊕
A∈R0 RAA, its self-dual WR-Hilbert W*-module (HR)′ of the

WR-module morphisms from HR to WR (see for example [25, section 3] for the
relevant definitions for Hilbert W*-modules), and taking the closures with respect to
the σ-weak topology. y

Remark 4.6. Consider the directed set Q of finite subsets Q ⊂ C0 of objects of C,

under inclusion. Every section σ : C0 × C0 → C1 of the bundle C1 (t,s)
−−−→ C0 × C0 with

support in Q×Q determines an adjointable operator acting via “line-by-column” mul-
tiplication on HC: σ(ξ)AB :=

∑
J∈Q σAJ◦ξJB. In a perfectly similar way, making use of

the construction of the W*-enveloping algebra in remark 4.5, every section with finite
support will determine an operator on (HC)′. The family of finitely supported sec-
tions is an involutive subalgebra of both C*(C) and W*(C) with multiplication given
by matrix convolution (σ1�σ2)AB =

∑
J σ

1
AJ◦σ

2
JB and involution given by the matrix

adjoint (σ?)AB = (σBA)∗.
Consider the canonical resolution of the identity Q 7→ IQ, where (IQ)AA := 1CAA ,

for all A ∈ Q, and (IQ)BC = 0CBC otherwise. For every operator T ∈ L(HC), consider
its induced net of finite-objects truncations (TQ)Q with TQ := IQ ◦ T ◦ IQ.

Define K(HC) ⊂ L(HC) as the (not necessarily unital) C*-algebra generated by
finite rank operators and notice that, whenever T ∈ K(HC), we have T = limQ→+∞ TQ,
where the limit is taken in the norm topology.

It follows that K(HC) consists of sections σ : C0 × C0 → C1 (not necessarily with
finite support) whose nets of finite truncations (σQ)Q are convergent in the operator
norm of L(HC). The multiplication operation in K(HC) coincides with the well-
defined convolution (σ1�σ2)AB :=

∑
J σ

1
AJ◦σ

2
JB and the involution operation coincides

with the well-defined adjunction (σ?)AB = (σBA)∗. The enveloping unital C*-algebra
C*(C) is isomorphic to the canonical unitization of of the non-unital enveloping C*-al-
gebra K(C) and hence for every σ ∈ C*(C) there is a constant kσ ∈ C such that
(σQ − kσ · IQ) converges in operator norm to σ − kσ · I.

The convergence in operator norm property of the net (TQ)Q of finite truncations
of T ∈ L(H) is stronger than the request of “blockwise” norm convergence of the net
of truncations, that in the case of W*-categories (and hence finite-dimensional C*-cat-
egories) C, actually identifies the sections in the W*-enveloping algebra W*(C). y

Proposition 4.7. A 1-dimensional C*-category C canonically determines a class of
unitary equivalent irreps of its (unital) C*-enveloping algebra and of its W*-envelop-
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ing algebra, on Hilbert spaces whose dimension is equal to the cardinality of the class
of objects C0. The enveloping W*-algebra W*(C) is a type I factor and we have a
canonical injective unital σ-weakly dense ∗-homomorphism ιC : C*(C) → W*(C)
preserving the previous unitary equivalence classes of irreps.

Proof. For any 1-dimensional C*-category C, making use of Gel’fand-Mazur theo-
rem [7, II.1.4.3] for the diagonal C*-algebras CAA, for every object A ∈ C0, we see
that there is a unique state on

⊕
A∈C0 CAA, defined as a family (φA)A∈C0 of (necessarily

unique) unital ∗-isomorphisms φA : CAA → C. Following the proof of proposition 4.4,
the enveloping C*-algebra C*(C) has been defined as a unital C*-subalgebra of the
adjointable operators on the left-

⊕
A∈C0 CAA Hilbert C*-module HC =

⊕
A∈C0 H

C
A ,

(external) direct sum of the left-CAA Hilbert C*-modules

HC
A :=

(xBA) ∈
�
B∈C0

CBA |

∑
B∈C0

(x∗)AB ◦ xBA


A∈C0

∈ CAA


that, via the canonical C*-isomorphisms φA : CAA → C, are actually Hilbert spaces
invariant and irreducible27 under the action of the C*-algebra C*(C). We only need
to show that all the irreducible representations of C*(C) on HC

A , for A ∈ C0, are
unitarily equivalent. For this purpose, we observe that HC =

⊕
A∈C0 H

C
A is also a

right module for the original C*-category C, via the standard (line by column) right
action Rx(ξ) := ξ ◦ x ∈ HC

B , for all ξ ∈ HC
A , x ∈ CAB, hence Rx(HC

A ) ⊂ HC
B and, by

associativity of composition in C, we see that Rx is an intertwiner of representations
T (Rx(ξ)) = Rx(T (ξ)), for T ∈ C*(C) and ξ ∈ HC

A . For two arbitrary objects A, B ∈ C0,
let x ∈ CAB be a non-zero element, considering u := x/‖x‖, since u ◦ u∗ = 1CAA and
u∗ ◦ u = 1CBB , we obtain that Ru : HC

A → HC
B is a unitary intertwiner between the

irreps of C*(C) on HC
A and HC

B , as desired.
A 1-C*-category is necessarily a 1-W*-category; by remark 4.5, since Hilbert

spaces are self-dual, also W*(C) is irreducibly faithfully represented, in an equivalent
way, on each of the previous Hilbert spaces HC

A , for A ∈ C0. It follows that W*(C) is
necessarily a type I factor, isomorphic to B(HC

A ). Our direct constructions ensure the
σ-weakly dense inclusion C*(C) ⊂ W*(C) ⊂ L(HC) and also show that under pull-
back by ιC the canonical irreducible representation of W*(C) restricts to the canonical
irreducible representation of C*(C). �

As a standard byproduct of abstract category theory (see for example [24, theo-
rem 2.3.6, corollary 2.3.7]), the previous construction of C*-enveloping algebras is
functorial and underlies an adjunction.

Corollary 4.8. There is an adjunction C* a U of functors A

U
&&

C*
gg C with unit

27Since C is full, for any pair of objects C,D ∈ C0, we can choose a unitary element eCD ∈ C*(C) such
that eCD

C′D′ := 0CC′D′
whenever (C′,D′) , (C,D); if an operator T ∈ B(HA) is commuting with all the eCD,

we necessarily have that T ∈ C · IdHA .
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η : IdC → U ◦ C* defined as C 7→ ηC, for C ∈ C 0, and co-unit ε : C* ◦U → IdA

given, for A ∈ A 0, by A 7→ εA := U(ιA), the unique unital ∗-homomorphism such
that U(εA) ◦ ηU(A) = U(ιA), where ιA is the identity map of the unital C*-algebra A.

There is a perfectly parallel adjunction W* a U′′ of functors A ′′

U′′ ((

W*
gg C ′′ between

the categories A ′′ of W*-algebras and C ′′ of W*-categories, as defined in remark 4.5.

We also need to define a “categorical-valued generalization” of the notion of tran-
sition amplitude space (a structure reminiscent of a “square root” of a K.Landsman
transition probability space [21, 22]) that was originally introduced and studied by
S.Gudder [18, section 4.5].28

Definition 4.9. Given a C*-category C with objects P := C0, and morphisms E := C1,
an E-valued C*-propagator on P consists of a section γ : P × P → E of the bundle
π : E→ P × P, where π(x) := (t(x), s(x)), for x ∈ C, such that:

• γ(p, p) = ι(p) ∈ Epp, for all p ∈ P,

• γ(p, q)∗ = γ(q, p), for all p, q ∈ P,

• there exists at least one γ-frame,29 i.e. a subset O ⊂ P such that

γ(p, q) =
∑
t∈O

γ(p, t) ◦ γ(t, q), ∀p, q ∈ P.

A subset I ⊂ P is γ-orthonormal if γ(p, q) = 0Cpq , whenever p , q. We say that the
propagator γ is total if every maximal orthonormal set is a γ-frame.30

Whenever C is a W*-category, (E, π, γ,P) is a W*-propagator.
A propagator (E, π, γ,P) is finite-dimensional (one-dimensional) whenever its

C*-category (E, π,P) is.31 A finite-dimensional propagator (E, π, γ,P) is finite if it
has a finite frame.32 The family of total E-valued propagators on P is denoted by
W 0(π).

28We warn again the reader that here we are “oversimplifying” the discussion: in reality, also for the case
of finite-dimensional C*-algebras, the “correct” notion of propagator requires the introduction of suitable
topologies and uniformities. In this paper, we can proceed ignoring such complications, only because,
in the finite-dimensional case, the restriction of the propagators to γ-frames becomes a one-dimensional
C*-category.

29It follows that every C*-category C admitting a propagator must be connected i.e. dimC Cpq > 0, for
all p, q ∈ C0.

30Every frame is always a maximal orthonormal set [18, lemma 4.20], hence for total transition amplitude
spaces the two notions coincide.

31Any finite-dimensional C*-propagator is a W*-propagator.
32Notice that a finite propagator is not necessarily a finite C*-category (its family of objects is not neces-

sarily a finite set) although it is always a finite-dimensional C*-category.
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A geometric morphism of C*-propagators33 (E1, π1, γ1,P1)
(ξ,Ξ)
−−−→ (E2, π2, γ2,P2)

consists of a function P2 ξ
−→ P1 and a covariant ∗-functor34 ξ•(π1)

Ξ
−→ π2, such that

Ξ0 = IdP2 and γ2 = Ξ1 ◦ ξ
•(γ1) ◦ (IdP1 )−1

ξ ; geometric morphisms of W*-propagators
are similarly defined requiring the σ-weak continuity of the ∗-functor Ξ1. A geometric
morphism of propagators is frame-preserving if for any γ2-frame O the image ξ(O) is
a γ1-frame.35

We denote by W the category of frame-preserving geometric morphisms of total
propagators with compositions and identities as previously defined in section 3 for
the category BFD. The full subcategory of 1-dimensional total propagators is here
denoted by 1-W . The subcategory of frame-preserving geometric isomorphisms in W
between finite 1-dimensional total propagators is denoted by WFD.

Given a (finite) propagator (E, π, γ,P), a section σ : P → E of the bundle π is
γ-invariant if, for any two pairs of γ-frames O1 × O2,O3 × O4, we have:

σ(p, q) =
∑

(t,r)∈O3×O4

γ(p, r) ◦ σ(r, t) ◦ γ(t, q), ∀(p, q) ∈ O1 × O2.

A C*-section is a section of a C*-propagator that, restricted to a γ-frame O, belongs
to the unital C*-enveloping algebra of the full C*-subcategory E|O := π−1(O×O) ⊂ E

with objects O:

σ|O×O ∈ C*(E|O), for every γ-frame O.

A W*-section of a W*-propagator, is a section that restricted to a γ-frame O, belongs
to the W*-enveloping algebra of the full W*-subcategory E|O := π−1(O ×O) ⊂ E with
objects O:

σ|O×O ∈W*(E|O), for every γ-frame O.

A γ-invariant section is a C*-section σ of a C*-propagator (or a W*-section of
a W*-propagator) if and only there exists a γ-frame O for which σ|O×O ∈ C*(E|O)
(respectively σ|O×O ∈W*(E|O) for a γ-frame O).

33Again, in the case of isomorphisms, the notion here introduced could be equivalently replaced by a
covariant ∗-functor (this means that we have two maps Ξ1 : E1 → E2 and Ξ0 : P1 → P2, such that
π2 ◦ Ξ1 = Ξ0 ◦ π

1, that satisfy Ξ1(ι1(ω)) = ι2(Ξ0(ω)), for all ω ∈ P1, Ξ1(x∗1 ) = Ξ1(x)∗2 , for all x ∈ E1 and
Ξ1(x ◦1 y) = Ξ1(x) ◦2 Ξ1(y), for all (x, y) ∈ E1 ×◦1 E

1), such that Ξ1 ◦ γ
1 = γ2 ◦ Ξ0.

34Here, we consider C*-categories as Fell bundles over discrete pair-groupoids and Ξ is a covariant
∗-functor, that preserves the transition amplitudes, from the C*-category ξ•(π1), the (ξ, ξ)-pull-back of the
C*-category π1, to the C*-category π2.

35 In the case of 1-dimensional propagators, since 1-C*-categories are full, every ∗-functor between
them is necessarily full and faithful and hence a fibrewise linear isomorphism. As a consequence, for
geometric morphisms of 1-dimensional propagators, ξ : P2 → P1 preserves orthogonality, but in general
does not necessarily send frames in frames (the surjectivity of ξ is a sufficient condition). Frame-preserving
geometric morphisms of 1-dimensional propagators are necessarily isomorphisms when restricted between
corresponding frames.
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We proceed now to establish an adjunction between a category of propagators and
a category of irreps-classes of unital C*-algebras. In view of further future applica-
tions, we will develop this material at a level of generality that is much higher than
strictly required for our finite-dimensional situation.

Proposition 4.10. The family of γ-invariant C*-sections

Γγ(π) := {σ : P × P→ E | π ◦ σ = IdP, γ-invariant C*-section}

of a (finite) C*-propagator (E, π, γ,P), is a unital (finite-dimensional) C*-algebra with
the following operations and norm:

(σ + τ)(p, q) := σ(p, q) +E τ(p, q), (α · σ)(p, q) := α ·E σ(p, q),

(σ?)(p, q) := (σ(q, p))∗E (σ � τ)(p, q) :=
∑
t∈O

σ(p, t) ◦E τ(t, q),

‖σ‖Γγ(π) := ‖σ|O×O‖C*(E|O),

where α ∈ C, σ, τ ∈ Γγ(π), p, q ∈ P, O is a γ-frame.
The C*-algebra Γγ(π) is the convolution C*-algebra of the C*-propagator (E, π, γ,P).

Similarly, the family of γ-invariant W*-sections of a (finite) W*-propagator

Γ′′γ (π) := {σ : P × P→ E | π ◦ σ = IdP, γ-invariant W*-section}

is a (finite-dimensional) W*-algebra with the operations and norms defined above.
The W*-algebra Γ′′γ (π) is the convolution W*-algebra of the W* propagator.

Proof. From the definition of propagator, we have γ|O1×O2 � γ|O2×O3 = γ|O1×O3 ,
γ|O1×O2 = γ|?

O2×O1
for all γ-frames O1,O2,O3, and γ|O×O is an “identity matrix” on

the γ-frame O, hence γ ∈ Γγ(π). A direct computation shows that the “convolution”
multiplication � and the norm ‖ · ‖Γγ(π) do not depend on the choice of the γ-frame
O. Using remark 4.6, given a γ-frame O, we see that the map σ 7→ σ|O×O is ac-
tually a bijective map between Γγ(π) and the C*-enveloping algebra C*(E|O), that
is also an isometric ∗-homomorphism, hence Γγ(π), with the given operations and
norm, is a C*-algebra with identity γ. Similarly, for a W*-propagator, since Γγ(π) is
σ-weakly dense in Γ′′γ (π) and C*(E|O) is σ-weakly dense in W*(E|O), the previously
defined isomorphism of C*-algebras σ 7→ σ|O×O uniquely extends to an isomorphism
of W*-algebras from Γ′′γ (π) to the W*-enveloping algebra W*(E|O). �

Proposition 4.11. A 1-dimensional propagator (E, π, γ,P) uniquely determines a uni-
tary equivalence class [π, γ] ∈ XΓγ(π) of irreps of its convolution C*-algebra Γγ(π) and
hence a unique unitary equivalence class [π, γ]′′ ∈ XΓ′′γ (π) of the W*-algebra Γ′′γ (π).36

There is canonical unital injective ∗-homomorphism ι(π,γ) : Γγ(π) → Γ′′γ (π) with
σ-weakly dense image, from the convolution C*-algebra to the convolution W*-alge-
bra of the 1-dimensional propagator. The map ι(π,γ) satisfies ι•(π,γ)([π, γ]′′) ⊂ [π, γ].

36For finite propagators, since the convolution C*-algebra is simple finite-dimensional, it has a unique
irreducible representation up to equivalence.
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Proof. By proposition 4.7, for every γ-frame O, we already have a canonical unitary
equivalence class of irreps for the enveloping C*-algebra C*(E|O) of the 1-dimensio-
nal C*-category E|O.

Since Γγ(π) is isomorphic to C*(EO), for any γ-frame O, via the isomorphism
|O : σ 7→ σ|O×O, and such isomorphisms are equivariant under the adjoint action

of the pair-groupoid with objects the γ-frames and morphisms O2
γ|O1×O2
−−−−−−→ O1 with

convolution composition, |O1 = AdγO1×O2
◦ |O2 , we have a unique unitary equivalence

class of irreps for Γγ(π).
Similarly, by proposition 4.7, for every γ-frame O, we also have a canonical uni-

tary equivalence class of irreps of the eveloping W*-algebra W*(E|O). Since Γ′′γ (π)
is canonically isomorphic to W*(E|O), and by the previous argument AdγO1×O2

is a
canonical W*-isomorphism between W*(E|O2 ) and W*(E|O2 ), for any pair of γ-frames
O1,O2, we have a unique unitary equivalence class of irreps for Γ′′γ (π).

The σ-weakly dense inclusion ιE|O : C*(E|O) → W*(E|O) in proposition 4.7 is
AdγO1×O2

-covariant and hence it uniquely induces the map ι(π,γ) that “preserves the
canonical irrep classes” i.e. ι(π,γ) ◦$ ∈ [π, γ], for all $ ∈ [π, γ]′′. �

Remark 4.12. For a 1-dimensional propagator (E.π, γ,P), we have a natural W*-iso-
morphism between the W*-algebra Γ′′γ (π) of γ-invariant W*-sections and (Γγ(π))′′[π,γ],
the W*-algebra of “orbits”, of Γγ(π) under unitary equivalence of the irreducible rep-
resentations ω ∈ [π, γ].

By the previous proposition, we know that Γγ(π) is σ-weakly dense in Γ′′γ (π) with
ι•(π,γ)([π, γ]′′) ⊂ [π, γ]. Furthermore, following the arguments in remark 2.1 and later in
remark 4.16, we have a canonical unital ∗-homomorphism$[π,γ] : Γγ(π)→ (Γγ(π))′′[π,γ]
with σ-weak dense image such that$•[π,γ]([π, γ]′′) ⊂ [π, γ]. As a consequence, the two
W*-algebras Γ′′γ (π) ' (Γγ(π))′′[π,γ] are canonically W*-isomorphic. y

The construction of the convolution C*-algebra and W*-algebra of a 1-dimension-
al propagator and their unitary equivalent classes of irreps is functorial.

Proposition 4.13. Let R denote the category whose objects are pairs (A, o), where

A is a unital C*-algebra and o ∈ XA; and whose morphisms (A1, o1)
φ
−→ (A2, o2) are

unital ∗-homomorphisms φ : A1 → A2 such that φ•(o2) ⊂ o1.37

There is a covariant functor � : 1-W → R that:

• to every one-dimensional total propagator (π, γ) associates the pair:

�(π, γ) := (Γ′′γ (π), [π, γ]′′),
37If $,$′ are unitarily equivalent irreps of A2, we have that φ•($) and φ•($′) are unitarily equivalent

representations of A1 and if one of them is irreducible they are both unitarily equivalent irreps of A1. The
condition φ•(o2) ⊂ o1 is equivalent to the existence of an irrep $ ∈ o2 such that φ•($) = $ ◦ φ ∈ o1. An
irrep-preserving unital ∗-homomorphism φ : A1 → A2 also preserves unitary equivalence, as a consequence
the φ-pull-back map between irreps induces a well-defined quotient map [$] 7→ [$ ◦ φ].
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• to a frame-preserving geometric morphism of propagators (π1, γ1)
(ξ,Ξ)
−−−→ (π2, γ2)

in W associates the morphism �(π1, γ1)
�(ξ,Ξ)
−−−−→ �(π2, γ2) in R given by:

�(ξ,Ξ) : σ 7→ Ξ ◦ ξ•(σ) ◦ (IdP1 )−1
ξ , ∀σ ∈ Γ′′

γ1 (π1).

Proof. By footnote 35, a frame-preserving geometric morphism of 1-dimensional
propagators necessarily restricts to an isomorphism between the γ2-frames O and the
γ1-frames ξ(O). As a consequence, we have �(ξ,Ξ)(σ) ∈ Γ′′

γ2 (π2) for σ ∈ Γ′′
γ1 (π1),

i.e. the section Ξ ◦ ξ•(σ) ◦ (IdP1 )−1
ξ is a W*-section that is γ2-invariant.

A direct computation shows that �(ξ,Ξ) : Γ′′
γ1 (π1)→ Γ′′

γ2 (π2) is a unital ∗-homomor-
phism of unital C*-algebras (and actually an isomorphism of W*-algebras) and that
(�(ξ,Ξ))•([π2, γ2]′′) = [π1, γ1]′′.

Finally, � is covariant: �(ξ1,Ξ1)◦(ξ2,Ξ2) = �(ξ1,Ξ1) ◦ �(ξ2,Ξ2), �(IdP,(IdP)π) = IdΓγ(π). �

We will denote by �FD : WFD → RFD the “restriction” of the functor � from the
sub-category WFD of isomorphisms of finite 1-dimensional total propagators and the
subcategory RFD of isomorphisms in R for finite-dimensional C*-algebras.

Making full usage of the notation introduced in remark 2.1 we have the following
spectral construction:

Proposition 4.14. To a pair (A, o), with A a unital C*-algebra, and o ∈ XA a unitary
equivalence class of irreducible representations of A, there is an associated spectral
transition amplitude propagator Σo(A) := ((EA)o, (πA)o, (γA)o, (PA)o) specified as
follows (see remark 2.1 for the notation):

• (PA)o := χ−1
A

(o) = {ω ∈ PA | [$ω] = o} is the family of pure states ω ∈ PA

whose GNS-irrep $ω belongs to the equivalence class o ∈ XA,

• (EA)o :=
⊎

(ω,ρ)∈(PA)o×(PA)o
(EA)ωρ, where (EA)ωρ :=| ω 〉〈ω | A′′o | ρ 〉〈 ρ |,

• (πA)o : (EA)o → (PA)o × (PA)o, with (πA)−1
o ((ω, ρ)) := (EA)ωρ,

• (γA)o : (PA)o × (PA)o → (EA)o with (γA)o(ω, ρ) :=| ω 〉〈ω | 1A′′o | ρ 〉〈 ρ |, for
ω, ρ ∈ (PA)o.

The spectral transition amplitude propagator is one-dimensional and total.

Proof. The “bundle” ((EA)o, (πA)o, (PA)o × (PA)o) over the pair groupoid base-space
(PA)o × (PA)o becomes a C*-category, with hom-sets consisting of the normed spaces
((EA)o)ωρ ⊂ A′′o , with the following operations:(
| ω 〉〈ω | T | ζ 〉〈 ζ |

)
◦
(
| ζ 〉〈 ζ | S | ρ 〉〈 ρ |

)
:=| ω 〉〈ω |

(
T | ζ 〉〈 ζ | S

)
| ρ 〉〈 ρ |,(

| ω 〉〈ω | T | ζ 〉〈 ζ |
)∗

:=| ρ 〉〈 ρ | T ∗ | ω 〉〈ω |, ∀ω, ζ, ρ ∈ (PA)o, ∀T, S ∈ A′′o ,
ι(ω) := 1((EA)o)ωω , the identity of C*-algebra ((EA)o)ωω ' C, ∀ω ∈ (PA)o.
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We need only to show that (γA)o satisfies the propagator axioms:

(γA)o(ω,ω) =| ω 〉〈ω | 1A′′o | ω 〉〈ω |= 1((EA)o)ωω = ι(ω),

(γA)o(ω, ρ)∗ =
(
| ω 〉〈ω | 1A′′o | ρ 〉〈 ρ |

)∗
=| ρ 〉〈 ρ | 1A′′o | ω 〉〈ω |= (γA)o(ρ, ω),

since o ∈ XA and for ω ∈ o we have A′′o ' B(Hω), frames are in bijective correspon-
dence with orthonormal sets in Hω and hence ((πA)o, (γA)o) is a 1-dimensional total
propagator. �

The previous construction of the spectral transition amplitude propagators of irrep-
classes of unital C*-algebras can be made into a covariant functor.

Proposition 4.15. There is a covariant functor � : R → 1-W defined as follows:

• to every pair (A, o) ∈ R, � associates the spectral transition amplitude propa-
gator constructed in proposition 4.14, �(A, o) := Σo(A),

• to every morphism (A1, o1)
φ
−→ (A2, o2) in R, � associates a morphism in 1-W

�(A1, o1)
�φ

−−→ �(A2, o2) given by �φ := (ξφ,Ξφ) where: ξφ : (PA2 )o2 → (PA1 )o1

is the φ-bull-back of pure states ξφ(ω) := ω ◦ φ, for ω ∈ (PA2 )o2 ; and the
map Ξφ : (ξφ)•((EA1 )o1 ) → (EA2 )o2 is fiberwise defined for all ω, ρ ∈ (PA2 )o2

as (Ξφ)ωρ : (ξφ)•((EA1 )o1 )|ωρ = ((EA1 )o1 )|ξφ(ω)ξφ(ρ) → ((EA2 )o2 )|ωρ via the map
| ω◦φ 〉〈ω◦φ | $o1 (x) | ρ◦φ 〉〈 ρ◦φ |7→| ω 〉〈ω | $o2 ◦φ(x) | ρ 〉〈 ρ |, for x ∈ A1.

Proof. Since φ satisfies φ•(o2) ⊂ o1, the map ξφ : (PA2 )o2 → (PA1 )o1 and the fibrewise
linear map Ξφ : (ξφ)•((EA1 )o1 )→ (EA2 )o2 are well-defined.

The fact that Ξφ is a ∗-functor and that Ξφ ◦ (ξφ)•((γA1 )o1 ) ◦ (Id(PA1 )o1
)−1
ξφ

= (γA2 )o2

follow, by direct computation, since φ : A1 → A2 is a unital ∗-homomorphism.

Since φ•(o2) ⊂ o1, we see that (ξφ,Ξφ) is a frame-preserving morphism in 1-W .

The covariance of �: �φ◦ψ = �φ ◦ �ψ, �IdA = (Id(PA)o , (Id(PA)o )(πA)o = Id�o(A)
follows from a direct computation. �

We will denote by �FD : RFD → WFD the “restriction” of the functor � from
the sub-category RFD of isomorphisms in R for finite-dimensional C*-algebras to the
subcategory WFD of isomorphism of finite 1-dimensional total propagators.

Remark 4.16. The unital ∗-homomorphism $o : A → A′′o defined at the end of
remark 2.1 has image $o(A) that is σ-weakly dense in A′′o since $ω(A)′′ = B(Hω),
for all pure states ω ∈ o, and A′′o ' B(Hω) via the W*-isomorphism (Tω) 7→ Tω. As a
consequence every pure state ω ∈ (PA)o uniquely extends to a pure state ω′′ ∈ PA′′o ;
furthermore, for all ω ∈ (PA)o, the states ω′′ induce unitarily equivalent irreps of A′′o
and hence there is a unique o′′ ∈ XA′′o such that $•o(o′′) ⊂ o and we have a bijective
the map (PA)o 3 ω 7→ ω′′ ∈ (PA′′o )o′′ .38 It also follows that there is a canonical
W*-isomorphism $′′o : A′′o → (A′′o )′′o′′ .

38Although there is a bijective map between (PA)o and (PA′′o
)o′′ , in general the map (PA)o → PA′′o

can
be very far from surjective and XA′′o

can contain many other points apart from o′′.
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The construction of the spectral transition amplitude propagator of (A, o) in propo-
sition 4.14 is “naturally invariant” under the map ( )′′ : (A, o) 7→ (A′′o , o

′′), that is
actually an endo-functor of R. This means that the functor � : (A, o) 7→ Σo(A) is
naturally isomorphic to the functor �◦ ( )′′ : (A′′o , o

′′) 7→ Σo′′ (A′′o ) via the natural iso-

morphism Σo′′ (A′′o )
(θ(A,o),Θ(A,o))
−−−−−−−−−−→ Σo(A) where θ(A,o) : (PA)o → (PA′′o )o′′ is defined as

θ(A,o) : ω 7→ ω′′ and Θ(A,o) : θ•(A,o)((πA′′o )o′′ )→ (πA)o is the θ(A,o)-pull-back fibrewise
identification between (EA′′o )o′′ and (EA)o given by

| ω′′ 〉〈ω′′ | $′′o (T ) | ρ′′ 〉〈 ρ′′ |7→| ω 〉〈ω | T | ρ 〉〈 ρ |, ∀T ∈ A′′o ,

where $′′o : A′′o → (A′′o )′′o′′ is above mentioned canonical W*-isomorphism. y

Definition 4.17. The algebraic Gel’fand transform is the natural transformation
GGG : IdR → � ◦ � that to a unitary equivalence class of irreps of a unital C*-algebra
(A, o) ∈ R0 associates the morphism

GGG(A,o) : (A, o)→ (Γ′′(γA)o
((πA)o), [(πA)o, (γA)o]′′)

in R given byGGG(A,o)(x) := x̂̂x̂x, for all x ∈ A, where:

x̂̂x̂x : (ω, ρ) 7→| ω 〉〈ω | $o(x) | ρ 〉〈 ρ |, for all ω, ρ ∈ PA such that [$ω] = o = [$ρ].

The previous definition is fully justified by the following lemma.

Lemma 4.18. For (A, o) ∈ R0, the algebraic Gel’fand transform x̂̂x̂x of x ∈ A sat-
isfies x̂̂x̂x ∈ Γ′′(γA)o

((πA)o), and hence GGG(A,o) : x 7→ x̂̂x̂x gives a well-defined function
GGG(A,o) : A→ Γ′′(γA)o

((πA)o) that is also a morphism in R. Furthermore the function
GGG : (A, o) 7→ GGG(A,o) is a natural transformationGGG : IdR → � ◦ �.

Proof. For all x ∈ A and for every (γA)o-frame O, x̂̂x̂x is a W*-section in W*((EA)o|O),
because, making use of remark 4.6, given any finite subset Q ⊂ O, the net of Q-trun-
cations x̂̂x̂x|Q σ-weakly converges to the operator norm bounded section x̂̂x̂x.

From the proof of proposition 4.10, we know that (γA)o = 1̂̂1̂1A is the identity of
the unital W*-algebra Γ′′(γA)o

((πA)o) and hence, for every (γA)o-frame O, we have that
(γA)o ∈ W*((EA)o|O) is the identity element of the enveloping W*-algebra of the
C*-category (EA)o|O. Since 1W* (EA)o |O =

∑
ρ∈O | ρ 〉〈 ρ |, by direct computation, we

get x̂̂x̂x|O2O2 = (γA)o|O2O1 � x̂̂x̂x|O1O1 � (γA)o|O1O2 , that is the (γA)o-invariance of x̂̂x̂x.

Showing that GGG(A,o) : A → � ◦ �(A) is a unital ∗-homomorphism, requires
the proof of the following properties x̂ · ŷx · ŷx · y = x̂̂x̂x · ŷ̂ŷy, x̂ + ŷx + ŷx + y = x̂̂x̂x + ŷ̂ŷy, x̂∗̂x∗̂x∗ = (x̂̂x̂x)∗ and
1̂A1̂A1̂A = 1�◦�(A,o), for all x, y ∈ A, that, just evaluating all the Gel’fand transforms on
pairs ω, ρ ∈ (PA)o, are immediate consequence of the definition of the operations in
the spectral transition amplitude propagator given in the proof of proposition 4.14.

First of all, notice that, using the notation in proposition 4.11 and remark 4.16,
given a propagator (π, γ) ∈ 1-W , if $ : Γ(γA)o ((πA)o)→ B(H$) is an irreducible rep-
resentation $ ∈ [π, γ], we have a type I factor $(Γγ(π))′′ = B(H$) and a unique



P.Bertozzini, R.Conti, N.Pitiwan 129

normal extension $′′ : Γ′′(γA)o
((πA)o) → B(H$) to the W*-algebra Γ′′(γA)o

((πA)o)
with $′′(Γ′′γ (π)) = B(H$). In this way we obtain a bijective correspondence of ir-
reducible representations [π, γ] 3 $ 7→ $′′ ∈ [π, γ]′′. Making use of the notation
introduced in 4.20 and lemma 4.21, we have ηηη((πA)o,(γA)o) : (PA)o → PΓ′′(γA )o

((πA)o)

and ηηη
((πA)o,(γA)o)
ω (x̂̂x̂x) = ζω(x̂̂x̂x(ω,ω)) = ω(x), for all x ∈ A and ω ∈ o, and hence

ηηη
((πA)o,(γA)o)
ω ◦GGG(A,o) = ω; furthermore ηηη((πA)o,(γA)o)

ω ∈ [(πA)o, (γA)o]. Considering the
irreducible ηηη((πA)o,(γA)o)

ω -GNS representation $ηηηω of Γ(γA)o ((πA)o), with GNS-vector ξ,
we see that 〈ξ | $′′ηηηω ◦ GGG(A,o)(x)ξ〉 = ηηηω(x̂̂x̂x) = ω(x) = 〈ξω | $ω(x)ξω〉. It follows
that there exists a unique unitary operator mapping ξω to ξ and intertwining the two
GNS-representations above and hence [$′′ηηηω ◦GGG(A,o)] = [$ω] = [ω] = o.

To prove that GGG is a natural transformation, we need to check that, for all mor-

phisms (A1, o1)
φ
−→ (A2, o2) in the category R, we haveGGG(A2,o2) ◦ φ = �(�φ) ◦GGG(A1,o1),

i.e. �(ξφ,Ξφ)(x̂̂x̂x) = φ̂(x)̂φ(x)̂φ(x), for all x ∈ A1, and this just means that for all ω, ρ ∈ (PA2 )o2 ,

Ξ
φ
ωρ(| ω ◦ φ 〉〈ω ◦ φ | $o1 (x) | ρ ◦ φ 〉〈 ρ ◦ φ |) =| ω 〉〈ω | $o2 ◦ φ(x) | ρ 〉〈 ρ |,

which is the defining property of �φ = (ξφ,Ξφ) in proposition 4.15. �

Remark 4.19. In general the algebraic Gel’fand transform A
GGG(A,o)
−−−−→ Γ′′(γA)o

((πA)o)
is neither injective nor surjective. If the unital C*-algebra A is not primitive there
is for sure o ∈ XA for which GGG(A,o) is not injective since, for π ∈ o, Ker π is non-
trivial. The surjectivity of the algebraic Gel’fand transform is present exactly when
Ao is isomorphic to a W*-enveloping algebra of a pair-groupoid. The full subcate-
gory R of R, with objects unitary equivalent classes or irreps of unital C*-algebras
whose Gel’fand transform is an isomorphism in R, necessarily contains all the prim-
itive finite-dimensional C*-algebras (hence RFD = RFD), since a primitive finite-
dimensional C*-algebra is necessarily isomorphic to a matrix algebra. y

Definition 4.20. The algebraic evaluation transform EEE : � ◦ � → Id1-W is the nat-
ural transformation that to every one-dimensional total propagator (π, γ) ∈ 1-W 0

associates the morphism of propagators EEE(π,γ) : ((πΓ′′γ (π))[π,γ]′′ , (γΓ′′γ (π))[π,γ]′′ )→ (π, γ) in
1-W given byGGG(π,γ) := (ηηη(π,γ),ΩΩΩ(π,γ)) where:

ηηη(π,γ) : P→ (PΓ′′γ (π))[π,γ]′′ , with ηηη(π,γ)
p (σ) := ζπp ◦ σ(p, p), ∀p ∈ P, ∀σ ∈ Γ′′γ (π),

with ζπp : Epp → C denoting the unique Gel’fand-Mazur isomorphism;

ΩΩΩ(π,γ) : (ηηη(π,γ))•((EΓ′′γ (π))[π,γ]′′ )→ E, fibrewise given, ∀p, q ∈ P, ∀σ ∈ Γ′′γ (π), by

ΩΩΩ
(π,γ)
pq : ((EΓ′′γ (π))[π,γ]′′ )ηηη(π,γ)

p ηηη
(π,γ)
q
→ Epq,

ΩΩΩ
(π,γ)
pq : | ηηη(π,γ)

p 〉〈ηηη
(π,γ)
p | $[π,γ]′′ (σ) | ηηη(π,γ)

q 〉〈ηηη
(π,γ)
q | 7→ σpq.

Again, the previous definition is fully justified by the following lemma.
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Lemma 4.21. For (E, π, γ,P) ∈ 1-W 0 and p ∈ P, we have ηηη(π,γ)
p ∈ (PΓ′′γ (π))[π,γ]′′ , hence

ηηη(π,γ) : P→ (PΓ′′γ (π))[π,γ]′′ is well-defined.
If σ, τ ∈ Γ′′γ (π) and | ηηηp 〉〈ηηηp | $[π,γ]′′ (σ) | ηηηq 〉〈ηηηq |=| ηηηp 〉〈ηηηp | $[π,γ]′′ (τ) | ηηηq 〉〈ηηηq |,
for any p, q ∈ P, we have σpq = τpq, hence ΩΩΩ(π,γ) : (ηηη(π,γ))•((EΓ′′γ (π))[π,γ]′′ ) → E is
a well-defined fibrewise linear map that is also an object-preserving ∗-functor such
that γ = ΩΩΩ(π,γ) ◦ (ηηη(π,γ))•(γΓ′′γ (π)) ◦ (IdPΓ′′γ (π)

)−1
ηηη(π,γ) and hence EEE(π,γ) := (ηηη(π,γ),ΩΩΩ(π,γ)) is a

geometric morphism of propagators in 1-W . Furthermore, the mapEEE : (π, γ) 7→ EEE(π,γ)
is a natural transformation EEE : � ◦ �→ Id1-W .

Proof. For every p ∈ P, the fiber Epp is a one-dimensional C*-algebra and there is a
unique Gel’fand-Mazur isomorphism ζπp : Epp → C and hence ηηη(π,γ)

p : Γ′′γ (π) → C is a
well-defined linear map. The map ηηη(π,γ)

p is unital:

ηηη
(π,γ)
p (1Γ′′γ (π)) = ηηη

(π,γ)
p (γ) = ζπp(γ(p, p)) = ζπp(1Epp ) = 1C;

and positive, since for any γ-frame O, we have:

ηηη
(π,γ)
p (σ? � σ) = ζπp

∑
q∈O

σ(q, p)∗ ◦ σ(q, p)

 ≥ 0C.

Since (π, γ) is total, by Zorn’s lemma, for every p ∈ X, there is a γ-frame O such
that p ∈ O. Let ψ : σ 7→ σ|O be the isomorphism between Γ′′γ (π) and W*(E|O), the
enveloping W*-algebra of the W*-category E|O. Since compactly supported sections
of E|O correspond to finite rank operators on the ηηη(π,γ)

p ◦ ψ−1-GNS Hilbert space, the
image $ηηη

(π,γ)
p ◦ψ−1 (W*(E|O)) contains all the compact operators and hence $ηηη

(π,γ)
p ◦ψ−1 is

an irreducible representation i.e. ηηη(π,γ)
p ◦ ψ−1 and ηηη(π,γ)

p are pure states belonging to the
canonical irrep [π, γ]′′.

From its definition, ΩΩΩ
(π,γ)
pq is a linear relation. In order to show that it is a well-

defined linear map, we need to show, for σ ∈ Γ′′γ (π), p, q ∈ P, that σ̂̂σ̂σ(ηηη(π,γ)
p , ηηη

(π,γ)
q ) = 0

implies σpq = 0. For this purpose, consider the γ-invariant C*-sections defined by
γp(p′, q′) := γ(p′, p) ◦ γ(p, q′) and similarly γq(p′, q′) := γ(p′, q) ◦ γ(q, q′) and notice
that $[π,γ](γp) =| ηηη

(π,γ)
p 〉〈ηηη

(π,γ)
p | and similarly for γq. Since

0 = σ̂̂σ̂σ(ηηη(π,γ)
p , ηηη

(π,γ)
q ) =| ηηη

(π,γ)
p 〉〈ηηη

(π,γ)
p | $[π,γ](σ) | ηηη(π,γ)

p 〉〈ηηη
(π,γ)
p |= $[π,γ]

(
γp ◦ σ ◦ γq

)
,

using the fact that $[π,γ] is faithful, we obtain: σpq = γp ◦ σ ◦ γq = 0.
The linearity of ΩΩΩ(π,γ) is explicit in its definition. Since it is acting fiberwise as

ΩΩΩ
(π,γ)
pq : (ηηη(π,γ))•(EΓ′′γ (π))pq → Epq, it preserves objects, i.e. π ◦ΩΩΩ(π,γ) = (πΓ′′γ (π))ηηη(π,γ) .

Let e ∈ EΓ′′γ (π)|pt and f ∈ EΓ′′γ (π)|tq; consider any two sections σ, τ ∈ Γ′′γ (π), such that
σ̂̂σ̂σ(ηηη(π,γ)

p , ηηη
(π,γ)
t ) = e and τ̂̂τ̂τ(ηηη(π,γ)

t , ηηη
(π,γ)
q ) = f . We have ΩΩΩ(π,γ)(e) = σpt and ΩΩΩ(π,γ)( f ) = τtq.

Let us define the new γ-invariant C*-sections σ′(p′, q′) := γ(p′, p) ◦ σ(p, t) ◦ γ(t, q′)
and similarly τ′(p′, q′) := γ(p′, p)◦τ(p, t)◦γ(t, q′), for all p′, q′ ∈ P. The new sections
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satisfy σ′pt = σpt and τ′tq = τtq. Since the map ΩΩΩ(π,γ) is a fibrewise isomorphism, we
have σ̂′σ̂′σ̂′(ηηη(π,γ)

p , ηηη
(π,γ)
t ) = e and τ̂′τ̂′τ̂′(ηηη(π,γ)

t , ηηη
(π,γ)
q ) = f . Since (σ′ � τ′)pq = σ′pt ◦ τ

′
tq, we

obtain ΩΩΩ
(π,γ)
pq (e ◦ f ) = ΩΩΩ

(π,γ)
pt (e) ◦ΩΩΩ

(π,γ)
tq ( f ) and hence the functoriality of ΩΩΩ(π,γ).

Since
(
| ηηηp 〉〈ηηηp | $[π,γ](σ) | ηηηq 〉〈ηηηq |

)∗
=| ηηηq 〉〈ηηηq | $[π,γ](σ?) | ηηηp 〉〈ηηηp |, we have

that ΩΩΩ(π,γ) is involutive: ΩΩΩ(π,γ) ◦ ∗ = ∗ ◦ΩΩΩ(π,γ). Hence ΩΩΩ(π,γ) is a ∗-functor.
Since we have ΩΩΩ

(π,γ)
ηηη

(π,γ)
p ηηη

(π,γ)
q

(
| ηηη

(π,γ)
p 〉〈ηηη

(π,γ)
p | $[π,γ](γ) | ηηη(π,γ)

q 〉〈ηηη
(π,γ)
q |

)
= γ(p, q) for all

p, q ∈ P, it follows that (ηηη(π,γ),ΩΩΩ(π,γ)) is a geometric morphism of propagators.

As explained in footnote 35, since (ηηη(π,γ),ΩΩΩ(π,γ)) is a geometric morphism of 1-di-
mensional total propagators, the map ηηη(π,γ) sends a given γ-frame O, into a γΓ′′γ (π)-or-
thogonal set and ηηη(π,γ) is injective when restricted to γ-frames. Given a γ-frame O,
from the details in the proof of proposition 4.7, we see that W*(O) is canonically
represented in L2(W*(O)) '

⊕
p∈O H

E|O
p , where (denoting by |O : Γ′′γ (π) → W*(O)

the canonical restriction isomorphism) each of the orthogonal Hilbert subspaces HE|O
p

coincides with the invariant irreducible ηηη(π,γ)
p ◦ |−1

O
-GNS space of W*(O) with GNS-

vector | ηηη(π,γ)
p 〉〈ηηη

(π,γ)
p |. From the partition of unity IdL2(W*(O)) =

∑
p∈O | ηηη

(π,γ)
p 〉〈ηηη

(π,γ)
p |

we have that ηηη(π,γ)(O) is a γΓ′′γ (π)-frame and hence (ηηη(π,γ),ΩΩΩ(π,γ)) is frame-preserving.

Given a morphism (E1, π1, γ1,P1)
(ξ,Ξ)
−−−→ (E2, π2, γ2,P2) in 1-W , we denote, with a

slight abuse of notation:

(E�, π�, γ�,P�) : = � ◦ �(E, π, γ,P) =

=
(
(EΓ′′γ (π))[π,γ]′′ , (πΓ′′γ (π))[π,γ]′′ , (γΓ′′γ (π))[π,γ]′′ , (PΓ′′γ (π))[π,γ]′′

)
and, for the morphism (E1

�, π
1
�, γ

1
�,P

1
�)

(ξ�,Ξ�)
−−−−−→ (E2

�, π
2
�, γ

2
�,P

2
�), we will use the nota-

tion (ξ�,Ξ�) := �(�(ξ,Ξ)) = (ξ(�(ξ,Ξ)),Ξ(�(ξ,Ξ))) .
In order to show that EEE : � ◦ � → Id1-W is a natural transformation, we have to

prove the following (ξ,Ξ)◦ (ηηη(π1,γ1),ΩΩΩ(π1,γ1)) = (ηηη(π2,γ2),ΩΩΩ(π2,γ2))◦ (ξ�,Ξ�). This means:(
ηηη(π1,γ1) ◦ ξ

)
=

(
ξ� ◦ ηηη(π2,γ2)

)
: P2 δ

−→ P1
�,(

Ξ ◦ΩΩΩ(π1,γ1) ◦ ζ
π1

�

(ηηη(π1 ,γ1), ξ)

)
=

(
ΩΩΩ(π2,γ2) ◦ Ξ� ◦ ζ

π1
�

(ξ�, ηηη(π2 ,γ2))

)
: δ•(E1

�)→ E2.

For the first equation above, for q ∈ P2 and σ ∈ Γ′′
γ1 (π1), we have:

ηηη
(π1,γ1)
ξ(q) (σ) = ζπ

1

ξ(q)(σ(ξ(q), ξ(q)))

(ξ� ◦ ηηη(π2,γ2))q(σ) = ηηη
(π2,γ2)
q (�(ξ,Ξ)(σ)) = ηηη

(π2,γ2)
q (Ξ ◦ ξ•(σ) ◦ (IdP1 )−1

ξ )

= (ζπ
2

q ◦ Ξq)(σ(ξ(q), ξ(q))),

from the Gel’fand-Mazur canonical isomorphisms ζπ
1

ξ(q) = ζπ
2

q ◦Ξq, the equality follows.
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For the second equation, for all p, q ∈ P2 and σ ∈ Γ′′
γ1 (π1), we have:

Ξpq ◦ΩΩΩ
(π1,γ1)
ξ(p)ξ(q)

(
| ηηη

(π1,γ1)
ξ(p) 〉〈ηηη

(π1,γ1)
ξ(p) | $[π1,γ1][σ] | ηηη(π1,γ1)

ξ(q) 〉〈ηηη
(π1,γ1)
ξ(q) |

)
= Ξpq(σ(ξ(p), ξ(q)))

= ΩΩΩ
(π2,γ2)
pq

(
| ηηη

(π2,γ2)
p 〉〈ηηη

(π2,γ2)
p | $[π2,γ2][�(ξ,Ξ)(σ)] | ηηη(π2,γ2)

q 〉〈ηηη
(π2,γ2)
q |

)
= ΩΩΩ

(π2,γ2)
pq ◦ Ξ�

ηηη
(π2 ,γ2)
p ηηη

(π2 ,γ2)
q

(
| ηηη

(π2,γ2)
p ◦ �(ξ,Ξ) 〉〈ηηη

(π2,γ2)
p ◦ �(ξ,Ξ) | $[π1,γ1][σ]

=| ηηη
(π2,γ2)
q ◦ �(ξ,Ξ) 〉〈ηηη

(π2,γ2)
q ◦ �(ξ,Ξ) |

)
= ΩΩΩ

(π2,γ2)
pq ◦ Ξ�

ηηη
(π2 ,γ2)
p ηηη

(π2 ,γ2)
q

(
| ηηη

(π1,γ1)
ξ(p) 〉〈ηηη

(π1,γ1)
ξ(p) | $[π1,γ1][σ] | ηηη(π1,γ1)

ξ(q) 〉〈ηηη
(π1,γ1)
ξ(q) |

)
,

hence, for all p, q ∈ P2, Ξpq ◦ΩΩΩ
(π1,γ1)
ξ(p)ξ(q) = ΩΩΩ

(π2,γ2)
pq ◦ Ξ�

ηηη
(π2 ,γ2)
p ηηη

(π2 ,γ2)
q

: (E1
�)δpδ(q) → E2

pq. �

Definition 4.22. A propagator (π, γ) in W is algebraically saturated if EEE(π,γ) is an
isomorphism. The full subcategory of algebraically saturated one-dimensional prop-
agators is denoted by 1-W

Theorem 4.23. There is an adjunction � a � between the two covariant functors

R

� **

�

gg 1-W .

The algebraic Gel’fand transform GGG : IdR → � ◦ � is the unit of the adjunction.
The co-unit is given by the algebraic evaluation transform EEE : � ◦ � → Id1-W , which
“embeds” every one-dimensional propagator (π, γ) into its algebraically saturated
spectral amplitude propagator � ◦ �(π, γ).

The previous adjunction of functors restricts to an adjunction of covariant func-

tors �FD a �FD, RFD

�FD
++

�FD

ii 1-W FD , with unitGGGFD : IdR → �FD ◦�FD and co-unit

EEEFD : �FD ◦ �FD → Id1-W , between the full-subcategories RFD of irrep-classes of
finite-dimensional C*-algebras, with irrep-classes-preserving isomorphisms, and the
category 1-W FD of algebraic finite one-dimensional total propagators, with isomor-
phisms.

Proof. We must show the following adjunction triangle identities (where ◦h and ◦v de-
note the compositions, over objects and over 1-arrows, of the natural transformations
involved):

(ι� ◦h EEE) ◦v (GGG ◦h ι�) = ι�, (EEE ◦h �) ◦v (� ◦hGGG) = ι�.
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For the first equation, we need to check that, for every one-dimensional propagator
(E, π, γ,P) in 1-W , (�EEE(π,γ) ) ◦ (GGG(Γ′′γ (π),[π,γ]′′)) = Id(Γ′′γ (π),[π,γ]′′), i.e. �EEE(π,γ) (̂σ̂σ̂σ) = σ, for
every γ-invariant W*-section σ ∈ Γ′′γ (π):(

�EEE(π,γ) (̂σ̂σ̂σ)
)

(p, q) : =
(
�(ηηη(π,γ),ΩΩΩ(π,γ)) (̂σ̂σ̂σ)

)
(p, q)

=
(
ΩΩΩ(π,γ) ◦ (ηηη(π,γ))• (̂σ̂σ̂σ) ◦ (IdPΓγ (π) )

−1
ηηη(π,γ)

)
(p, q)

= ΩΩΩ(π,γ) ◦ σ̂̂σ̂σ
(
ηηη(π,γ)(p), ηηη(π,γ)(q)

)
= ΩΩΩ(π,γ)

(
| ηηη(π,γ)(p) 〉〈ηηη(π,γ)(p) | $(σ)o | ηηη

(π,γ)(q) 〉〈ηηη(π,γ)(q) |
)

= σ(p, q),

for all p, q ∈ P, where [ηηη(π,γ)(p)] = o = [ηηη(π,γ)(q)].
For the second equation, we need to check, for every unitary equivalence class of

irreps of a unital C*-algebra (A, o) in R, that (EEE((πA)o,(γA)o)◦(�GGG(A,o) ) = ι((πA)o, (γA)o)
and this means

(ηηη((πA)o,(γA)o),ΩΩΩ((πA)o,(γA)o)) ◦ (ξGGG(A,o) ,ΞGGG(A,o) ) = (Id(PA)o , ζ(EA)o ) and hence

ξGGG(A,o) ◦ ηηη((πA)o,(γA)o) = Id(PA)o (1)

ΩΩΩ((πA)o,(γA)o) ◦
(
ηηη((πA)o,(γA)o)

)•
(ΞGGG(A,o) ) ◦ ζ(πA)o

ξ
GGG(A,o) , ηηη((πA )o ,(γA )o) = ζ(EA)o . (2)

To obtain equation (1), we observe that, for every ω ∈ (PA)o and x ∈ A:

ξGGG(A,o) ◦ ηηη
((πA)o,(γA)o)
ω (x) = ηηη

((πA)o,(γA)o)
ω (GGG(A,o)(x)) = ζ(πA)o

ω ◦ x̂̂x̂x(ω,ω)

= ζ(πA)o
ω

(
| ω 〉〈ω | $o(x) | ω 〉〈ω |

)
= ζ(πA)o

ω (ω(x) | ω 〉〈ω |) = ω(x).

To obtain equation (2), we observe that, for every ω, ρ ∈ (PA)o and for every x ∈ A:

Ξ
GGG(A,o)
ηηηωηηηρ

(
| ω 〉〈ω | $o(x) | ρ 〉〈 ρ |

)
= Ξ

GGG(A,o)
ηηηωηηηρ

(
| ξGGG(A,o) (ηηηω) 〉〈 ξGGG(A,o) (ηηηω) | $o(x) | ξGGG(A,o) (ηηηρ) 〉〈 ξGGG(A,o) (ηηηρ) |

)
=| ηηη

((πA)o,(γA)o)
ω 〉〈ηηη

((πA)o,(γA)o)
ω | $[(πA)o,(γA)o](x̂̂x̂x) | ηηη((πA)o,(γA)o)

ρ 〉〈ηηη
((πA)o,(γA)o)
ρ |,

ΩΩΩ
((πA)o,(γA)o)
ωρ

(
| ηηη

((πA)o,(γA)o)
ω 〉〈ηηη

((πA)o,(γA)o)
ω | $[(πA)o,(γA)o](x̂̂x̂x)

| ηηη
((πA)o,(γA)o)
ρ 〉〈ηηη

((πA)o,(γA)o)
ρ |

)
= x̂̂x̂x(ω, ρ) =| ω 〉〈ω | $o(x) | ρ 〉〈 ρ |,
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and hence, from the following commuting diagram,39

(EA)o|ωρ (ξ•((EA)o)|ηηηωηηηρ
ξ(πA )o |ηηηωηηηρoo

ΞGGG |ηηηωηηηρ // E�◦�(A,o)|ηηηωηηηρ

(Id(PA)o )•((EA)o)|ωρ

ζ(EA )o |ωρ

OO

ζ
(πA )o
ξ,ηηη |ωρ

// ηηη•(ξ•((EA)o))|ωρ

ηηηβ1 |ωρ

OO

ηηη•(ΞGGG)|ωρ
// ηηη•(E�◦�(A,o))|ωρ

ηηηβ2 |ωρ

OO

ΩΩΩ|ωρ

// (EA)o|ωρ

we finally obtain:
ΩΩΩ((πA)o,(γA)o) ◦

(
ηηη((πA)o,(γA)o)

)•
(ΞGGG(A,o) ) ◦ ζ(πA)o

ξ
GGG(A,o) , ηηη((πA )o ,(γA )o) ◦ (ζ(EA)o )−1 = Id(EA)o . �

Restricting the previous adjunction � a � to the full reflective subcategories R
and 1-W we obtain:40

Corollary 4.24. There is an adjoint equivalence R

� **

�

gg 1-W , � a �, with unit

isomorphismGGG : IdR → � ◦ � and co-unit isomorphism EEE : � ◦ �→ Id1-W , between
the reflective subcategory R of algebraically saturated unitary equivalence classes
of irreps of unital C*-algebras and the reflective subcategory 1-W of algebraically
saturated one-dimensional total propagators.

The previous adjoint equivalence restricts to an adjoint equivalence �FD a �FD,

RFD

� ++

�

ii 1-W FD , with unit and co-unit respectively given by:

GGG
FD : IdR → �FD ◦ �FD, EEEFD : �FD ◦ �FD → Id1-W ,

between the full-sucategories RFD irrep-classes of finite-dimensional C*-algebras,
with irrep-class-preserving isomorphisms, and the category 1-W FD of algebraically
saturated finite one-dimensional total propagators, with isomorphisms.

Remark 4.25. Denote by G(π) the group of ∗-automorphisms of the 1-C*-category
π : E→ P of a (discrete) propagator (E, π, γ,P) and let us denote by ∇(π, γ) the set of
all possible transition amplitudes γ′ for this 1-C*-category π : E → P, such that
there exists an isomorphism of propagators (ξ,Ξ) : (E, π, γ,P)→ (E, π, γ′,P) such
that (ξ,Ξ) ∈ G(π) and hence γ′ = Ξ◦γ◦ξ−1. Notice that the global “gauge group” G(π)
is acting canonically on the set ∇(π, γ) of admissible transition amplitudes (that here
play the role of “γ-frame-connections”) as γ1 7→ Ξ◦γ1◦ξ−1. The (discrete) propagator
(π, γ) is algebraically saturated if and only if ∇(π, γ) is a torsor for the gauge group
G(π) i.e. the previous action of G(π) on ∇(π, γ) is transitive and effective. Denoting

39Where ηηηβ
1

: ηηη•((ξ•((EA)o)) → ξ•((EA)o) → and ηηηβ
2

: ηηη•(E�◦�(A,o)) → E�◦�(A,o) are the canonical
isomorphisms in the definition of the respective ηηη-pull-backs.

40With a small abuse of notation we continue to denote functors and transformations in these restriction
with the same symbols.
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by O(π, γ) the set of γ-frames of the (discrete) propagator (π, γ), we have the prin-
cipal bundle over O(π, γ) with O-fiber UO := {σ ∈ Γ(π|O) | σ? � σ = γ|O = σ � σ?}
and we consider the group of “unitary sections” of π|O : E|O → O, for O ∈ O(π, γ).
The global gauge group G(π) is fiberwise acting transitively and effectively on UO,
since every (ξ,Ξ) ∈ G(π) uniquely determines a unitary Ξ ◦ γ|O ∈ UO. Denot-
ing by ∇(π, γ)O the family of unitary pair-groupoids between γ-frames obtained by
frame localization of any transition amplitude γ′ ∈ ∇(π, γ), we have a gauge action
of the global gauge group G(π) on the set of “connections” ∇(π, γ)O by conjugation:
γ′|O 7→ (Ξ ◦ γO2 ) � γ′

O2O1
� (Ξ ◦ γO1 )−1. The saturation condition is equivalent to re-

quiring that ∇(π, γ)O is a torsor for such action of G(π). y

We now start to introduce the fundamental spectral environment for our work: the
category EFD whose objects are “bundles of finite total propagators of 1-dimensional
C*-categories over a finite set”.

Definition 4.26. A discrete non-commutative spaceoid (E, π, γ,P, χ,X) consists of

the following diagram
E

π ,,

µ1
��

P ×χ P

µ0
||

γ

kk

X

with µ1 = µ0 ◦ π and µ1 ◦ γ = µ0,

where:

• X is a set, P
χ
−→ X is a bundle, and {(p, q) ∈ P | χ(p) = χ(q)} =: P ×χ P

µ0
−→ X is

its fiberwise product bundle, hence µ0(p, q) := χ(p) = χ(q), for (p, q) ∈ P ×χ P,

• for all o ∈ X, the fiber restriction Eo
πo:=(to,so)
−−−−−−−→ Po × Po of the map π is a

1-dimensional C*-category with objects Po, hence µ := (µ1, µ0) is a bundle of
1-C*-categories,

• γo ∈ 1-W (πo) i.e. Eo

πo ++

γo

hh Po × Po is a total Eo-valued propagator on Po,

for all o ∈ X.

A finite discrete non-commutative spaceoid is a discrete spaceoid (E, π, γ,P, χ,X)
with finite base space X, whose fibers (πo, γo) ∈ WFD are finite propagators for all
o ∈ X.

A morphism of discrete non-commutative spaceoids µ1 (λ,Λ)
−−−→ µ2, between two

discrete non-commutative spaceoids µ j := (E j, π j, γ j,P j, χ j,X j), for j = 1, 2, is given
by a pair (λ,Λ) where:

• λ : X1 → X2 is a map between sets,

• Λ : λ•(µ2) → µ1 is a fibrewise frame-preserving geometric morphism of prop-
agators in the category 1-W : namely, for all o ∈ X1, Λo := (Λ0

o,Λ
1
o) is a

geometric morphism from the λ-pull-back of µ2 to µ1.
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We denote by E the category of such morphisms with composition and identity as in
the case of BFD. The subcategory of fibrewise ∗-isomorphisms of finite spaceoids in
E is denoted by EFD.

We proceed now to define a pair of adjoint covariant functors between BFD and
EFD. These are just obtained by “fiberwise application” of the previous adjunction
�FD a �FD in theorem 4.23.

Definition 4.27. The fiber section functor Γ|FD : EFD → BFD associates to a fi-
nite discrete spaceoid (E, π, γ,P, χ,X) the bundle Γ|FD(π, γ, χ) on X with o-fibers
�FD(πo, γo) := (Γ′′γo

(πo), [πo, γo]′′) consisting of the primitive finite-dimensional C*-al-
gebras Γ′′γo

(πo), of γo-invariant C*-sections of the finite total Eo-valued propagator
(Eo, πo, γo,Po) over Po (and their unique irrep-classes [πo, γo]′′).

To every morphism (E1, π1, γ1,P1, χ1,X1)
(λ,Λ)
−−−→ (E2, π2, γ2,P2, χ2,X2) of finite dis-

crete spaceoids in EFD, the fiber section functor associates the morphism of finite
bundles of primitive finite-dimensional C*-algebras given by:

Γ|FD(π1, γ1, χ1)
Γ|FD

(λ,Λ)
−−−−→ Γ|FD(π2, γ2, χ2), Γ|FD

(λ,Λ) := (λΓ,ΛΓ),

where λΓ := λ, and λ•(Γ|FD(π2, γ2, χ2))
ΛΓ

−−→ Γ|FD(π1, γ1, χ1) is fiberwise defined as
ΛΓ

o := �FD
Λo

, the Λ0
o-pull-back of γ2

λ(o)-invariant sections

ΛΓ
o : σλ(o) 7→ Λ1

o ◦ (Λ0
o)•(σλ(o)) ◦ (IdP2

λ(o)
)−1
Λ0

o
,

for all σλ(o) ∈ Γγ2
λ(o)

(π2
λ(o)), for o ∈ X1.

For all o ∈ X1, the map ΛΓ
o is a unital ∗-isomorphism of primitive finite-dimensio-

nal C*-algebras. A direct computation ensures that Γ|FD
(λ1,Λ1)◦(λ2,Λ2) = Γ|FD

(λ1,Λ1) ◦ Γ|FD
(λ2,Λ2)

and Γ|FD
(IdX,η(E,π,γ,P,χ,X))

= (IdX, ηΓ|FD(π,γ,χ)), providing the covariant functoriality of Γ|FD.

Definition 4.28. The fiber spectrum functor Σ|FD : BFD → EFD associates to a
bundle (F, θ,X) in B0

FD of primitive finite-dimensional C*-algebras on a finite set X,
its spectral finite discrete spaceoid Σ|FD(θ) ∈ EFD, over the finite set X, whose o-
fibers, for all o ∈ X, are �FD(Fo, κθ(o)) ∈ 1-W FD, where κθ is the canonical bijection
in remark 3.1.

To every morphism (F1, θ1,X1)
(λ,Λ)
−−−→ (F2, θ2,X2) in BFD, the fiber spectrum

functor associates the morphism Σ|FD(θ1)
Σ|FD

(λ,Λ)
−−−−→ Σ|FD(θ2) of finite spectral discrete

spaceoids given by Σ|FD
(λ,Λ) := (λΣ,ΛΣ), where λΣ := λ and λ•(Σ|FD(θ2))

ΛΣ

−−→ Σ|FD(θ1)
is fibrewise defined, for all o ∈ X1, as the isomorphism ΛΣ

o := �FD
Λo

:= (ξΛo ,ΞΛo ) of
finite propagators, where ξΛo : PF1

o
→ PF2

λ(o)
is the Λo-pull-back of pure states under

the ∗-isomorphisms Λo : F2
λ(o) → F1

o , and ΞΛo is the isomorphism of 1-C*-categories
| ω ◦Λo 〉〈ω ◦Λo | x | ρ ◦Λo 〉〈 ρ ◦Λo | 7→ | ω 〉〈ω | Λo(x) | ρ 〉〈 ρ |, for all ω, ρ ∈ PF1

o
.
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For all o ∈ X1, the map ΛΣ
o is an isomorphism in 1-W FD.

A direct computation assures the covariant functoriality of Σ|FD:

Σ|FD
(λ1,Λ1)◦(λ2,Λ2) = Σ|FD

(λ1,Λ1) ◦ Σ|FD
(λ2,Λ2), Σ|FD

(IdX,η(F,θ,X)) = (IdX, ηΣ|FD(θ)).

Definition 4.29. The fiber Gel’fand transform G|FD associates to a bundle (F, θ,X)
in B0

FD the morphism

G|FD
θ : Γ|FD ◦ Σ|FD(θ)

(υθ ,Υθ)
−−−−−→ (F, θ,X)

in B1
FD, with υθ := IdX : X → X, and Υθ defined fibrewise, for all o ∈ X, by

Υθ
o := GGG(Fo,κθ(o)) : Fo → Γ|FD ◦ Σ|FD(θ)o.

The fiber evaluation transform E|FD : IdEFD associates to finite discrete spaceoids
(E, π, γ,P, χ,X) in E 0

FD the morphisms of discrete spaceoids

E|FD
(π,γ,χ) : (E, π, γ,P, χ,X)

(η(π,γ,χ),Ω(π,γ,χ))
−−−−−−−−−−→ Σ|FD ◦ Γ|FD(π, γ, χ)

in E 1
FD where η(π,γ,χ) := IdX : X → X and Ω(π,γ,χ) is fibrewise given by the geometric

morphism of propagators Ω
(π,γ,χ)
o := EEE(πo,γo) : (Eo, πo, γo,Po)→ Σ|FD◦Γ|FD(πo, γo,Po),

for all o ∈ X.

From the fiberwise definitions, we have that G|FD : IdBFD → Γ|FD ◦ Σ|FD is a
natural isomorphism and that E|FD : IdEFD → Σ|FD ◦ Γ|FD is a natural transformation.

Theorem 4.30. There is an adjunction Σ|FD ` Γ|FD between the covariant functors

BFD

Σ|FD

))

Γ|FD
jj EFD , with unit E|FD : IdE FD → Σ|FD ◦ Γ|FD the fiber evaluation trans-

form and with co-unit G|FD : Γ|FD ◦ Σ|FD → IdBFD the fiber Gel’fand transform
isomorphism.

Restricting the previous adjunction Σ|FD ` Γ|FD to the reflective full subcategory
E FD, whose objects are the saturated algebraic finite non-commutative spaceoids, we
obtain an adjoint equivalence.41

Proof. The result follows by a “fibrewise application” of the previous adjunction in
theorem 4.23.42 �

Our final duality is obtained by composing the adjoint duality in 3.2 with the ad-
joint equivalence in 4.30:

a ΣFD ΓFD ` AFD

ΣFD

**

ΓFD

jj BFD

Σ|FD

**

Γ|FD

jj E FD Σ|FD ` Γ|FD.

41Here, with some minor abuse of notation, we do not give alternative notation for the functors, units and
co-units.

42One has to remember that the “direction” of morphisms in the categories BFD and EFd is the “opposite”
of the “direction” in R and 1-W and hence the direction of the Gel’fand and evaluation transforms are
reversed.
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Definition 4.31. The contravariant section functor ΓFD and the contravariant spec-
trum functor ΣFD are defined by compositions of the previous contraviariant base and
covariant fiber functors:

ΓFD := ΓFD ◦ Γ|FD : EFD → AFD, ΣFD := Σ|FD ◦ ΣFD : AFD → EFD.

Considering the (big) strict 2-category of natural transformations between func-
tors, with categories as objects, (denoting by ◦h the “horizontal” composition and ◦v

the “vertical” compositions of natural transformations), we define non-commutative
Gel’fand and evaluation transforms.

Definition 4.32. The non-commutative Gel’fand transform is the natural transfor-
mation:

G
FD :=

(
ΓFD ◦h G|

FD ◦h ΣFD
)
◦v G

FD : IdAFD → ΓFD ◦ ΣFD.

The non-commutative evaluation transform is the natural transformation:

E
FD :=

(
Σ|FD ◦h E

FD ◦h Γ|FD
)
◦v E|

FD : IdEFD → ΣFD ◦ ΓFD.

Theorem 4.33. There is a right-right contravariant adjunction a ΣFD ΓFD ` between

the pair of contravariant functors AFD

ΣFD=Σ|FD◦ ΣFD

**

ΓFD=ΓFD◦ Γ|FD

jj EFD with units GFD and EFD.

Restricting this right-right contravariant adjunction to the saturated full subcate-
gory E FD, we obtain the discrete non-commutative Gel’fand-Naı̆mark adjoint duality

AFD

ΣFD=Σ|FD◦ ΣFD

**

ΓFD=ΓFD◦ Γ|FD

jj E FD .

Proof. The theorem is immediately obtained using the standard categorical composi-
tion of adjuctions.

By remark 3.4 and proposition 3.6, considering the dual category B◦
FD, we have

the covariant adjoint equivalence (◦ΣFD a ΓFD◦) with unitGFD : IdAFD → ΓFD◦◦◦ΣFD

the base Gel’fand transform isomorphism and co-unit EFD◦ : ◦ΣFD ◦ ΓFD◦ → IdB◦
FD

the dual base evaluation transform isomorphism.
By theorem 4.30 and by remark 3.4, considering both the dual categories B◦

FD
and E ◦FD, we have the covariant adjunction (◦Σ|FD◦ a ◦Γ|FD◦) with unit the dual fiber
Gel’fand transform G|FD◦ : IdB◦

FD
→ ◦Γ|FD◦ ◦ ◦Σ|FD◦ and co-unit the dual fiber evalu-

ation transform E|FD◦ : ◦Σ|FD◦ ◦ ◦Γ|FD◦ → IdE ◦FD
.

Composing the previous covariant adjunctions (see [27, proposition 4.4.4]), we
obtain the covariant adjunction (◦Σ|FD◦ ◦ ◦ΣFD) a (ΓFD◦ ◦ ◦Γ|FD◦) with the following
unit and co-unit:43

43The symbol ◦̃v reminds that this vertical composition is performed “pointwise” composing in the dual
category E ◦FD.
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(
ΓFD◦ ◦h G|

FD◦ ◦h
◦ΣFD

)
◦v G

FD : IdAFD → (ΓFD◦ ◦ ◦Γ|FD◦) ◦ (◦Σ|FD◦ ◦ ◦ΣFD),

E|FD◦◦̃v

(
◦Σ|FD◦ ◦h E

FD◦ ◦h
◦Γ|FD◦

)
: (◦Σ|FD◦ ◦ ◦ΣFD) ◦ (ΓFD◦ ◦ ◦Γ|FD◦)→ IdE ◦FD

.
Finally, by duality, passing back to the original categories using again remark 3.4,

we obtain a contravariant right-right adjunction a ΣFD ΓFD ` with units respectively
the non-commutative Gel’fand and evaluation transforms as defined in 4.32.

Upon restriction of the fiber adjoint equivalence to the saturated full subcategory
E FD, since all of the Gel’fand and evaluation transforms are now natural isomor-
phisms, we obtain the adjoint duality. �

5 Commutative and C*-categorical Dualities
In this section we clarify the connection between the (discrete) non-commutative
Gel’fand-Naı̆mark duality here developed, the usual commutative Gel’fand-Naı̆mark
duality for (finite) Abelian C*-algebras and the duality for full Abelian (finite-objects)
C*-categories discussed in [3]. In particular we describe how the discrete non-commu-
tative spaceoids in definition 4.26 are related to the usual (finite) compact Hausdorff
Gel’fand spectra and to the (discrete) topological spaceoids introduced in previous
works [3, 4].

Let AFC
� � // AFD denote the full-faithful functorial “inclusion” of the cate-

gory AFC of unital ∗-homomorphisms of finite-dimensional commutative C*-algebras
as a full subcategory of AFD. By theorem 2.2, a finite-dimensional Abelian C*-algebra
A is of the form

⊕N
n=1 C, for a certain non-zero natural N ∈ N0 and, from remark 2.3,

XA is a finite discrete space that is canonically homeomorphic to the usual discrete
compact Hausdorff Gel’fand spectrum Sp(A), via the map Sp(A) 3 ω 7→ [ω] ∈ XA.
Denoting by SFC the category of continuous maps between finite compact Hausdorff
topological spaces, by ΓFC : SFC → AFC the restriction of the usual “continuous-
maps Gel’fand functor” S 0

FC 3 X 7→ ΓFC(X) := C(X;C) ∈ A 0
FC and denoting

by ΣFC : AFC → SFC the restriction of the usual “Gel’fand spectrum functor”
A 0

FC 3 A 7→ Sp(A) ∈ S 0
FC (both acting as “pull-backs” on morphisms), we have

the following “restriction” of the usual commutative Gel’fand-Naı̆mark right-right
adjoint duality to the discrete case: (a ΣFC ΓFC `) with units given by the usual
Gel’fand transform GFC : IdAFC → ΓFC ◦ ΣFC with GFC

A
: x 7→ x̂ ∈ C(Sp(X);C), for

x ∈ A ∈ A 0
FC , and the usual evaluation transform EFC : IdSFC → ΣFC ◦ ΓFC with

EFC
X : p 7→ evp ∈ Sp(C(X;C)), for p ∈ X ∈ S 0

FC .
The following proposition describes the precise relationship between the discrete

version of the usual Gel’fand-Naı̆mark adjoint duality and our discrete duality via
discrete spaceoids. The proof is totally elementary, the only real difficulty being the
exact specification of the structures (functors and natural transformations) involved.

Proposition 5.1. Let Φ : SFC → SFD be the functor that to every finite discrete
space X ∈ S 0

FC associates the discrete spaceoid (EX , πX , γX ,PX , χX ,XX) consisting of
the bundle, over X, of trivial 1-dimensional propagators: XX := X := PX , χX := IdX ,
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(EX , πX ,PX×χX PX) the trivial C-line bundle over PX×χX PX ' X, γX : PX×χX PX → EX

the constant section γX(p, p) := 1C, for all p ∈ X = PX .44

The following are weakly commuting square diagrams between functors

AFD

ΣFD
))

ΓFD

ii SFD

AFC
?�

OO

ΣFC
))

ΓFC

ii SFC

Φ

OO

,

in detail: there is a natural isomorphism of functors ΓFD ◦ Φ
F
−→ ΓFC given by the

natural transformation S 0
FC 3 X

F
−→ FX ∈ A 1

FD, where, for all σ ∈ ΓFD(Φ(X)), we
define FX(σ) ∈ ΓFC(X) := C(X;C) as the function FX(σ)p = ζp(σp), for all p ∈ X,
where ζp denotes the unique Gel’fand-Mazur isomorphism between the 1-dimensional
C*-algebra EX

pp and C;

there is a natural isomorphism of functors ΣFD|AFC

T
−→ Φ◦ΣFC given by the natural

transformation A 0
FC 3 A

T
−→ TA ∈ S 1

FD, where ΣFD(A)
TA
−−→ Φ ◦ ΣFC(A) is the

isomorphism of spaceoids TA := (ξA,ΞA) with (ΞA)0 := IdSp(A) : PA → Sp(A),
ξA : XA → XSp(A) is given by ξA : [ω] 7→ ω ∈ Φ(Sp(A)), for all ω ∈ PA = Sp(A),
and (ΞA)1|ωω := ζω : (EA)ωω → ESp(A) = C is just the Gel’fand-Mazur isomorphism
ζω, for all ω ∈ Sp(A).

There is a morphism of (right-right) adjoint dualities:45

(a ΣFC ΓFC `) −→ (a ΣFD ΓFD `)

F ◦GFD
A = GFC

A , ∀A ∈ A 0
FC , T ◦ EFD

Φ(X) = Φ ◦ EFC
X , ∀X ∈ S 0

FC .

The term “spaceoid” was originally introduced in a previous paper [3] providing
spectral descriptions of commutative full C*-categories. Since then, it was already
clear that the notions there described (with some suitable adjustments) were suffi-
ciently powerful to support a spectral analysis for non-commutative C*-algebras. It
is a necessary duty to explain how the discrete non-commutative spaceoids here de-
fined are related to one of the three equivalent definitions of topological spaceoid as
discussed in [4]).

44The functor Φ associates to every map f : X → Y the morphism ( f , f , F) : Φ(Y) → Φ(X) of trivial
discrete spaceoids, with f : XX → XY , f : PX → PY and where F : f •(EY )→ EX is the necessarily unique
fibrewise linear isomorphism preserving the identity of the 1-dimensional C-fibers EY

f (p) f (p) and EX
pp, for

p ∈ X.
45By this we mean that the natural transformations of the adjunctions weakly-commute with the respec-

tive inclusion functors, modulo the same natural isomorphisms F, T involved in the weak-commutation of
the above diagrams of functors.
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Definition 5.2. A C*-categorical spaceoid46 is a bundle C
µ
−→ X, over a compact

Hausdorff space X of full one-dimensional C*-categories Co, for o ∈ X, with a set ∆

such that C0
o = ∆, for all o ∈ X.

In the specific “discrete” situation studied in this paper, we will of course choose
X to be a finite discrete topological space and ∆ a finite set.

Proposition 5.3. Every finite C*-categorical spaceoid (C, µ,X) is a specific case of
discrete non-commutative spaceoid, where, for every o ∈ X, we have the (generally
non-saturated) finite propagator (Co, π, γ,∆), with γo : ∆ × ∆ → C given by the
“identity section” γo(A, A) := 1(Co)AA, for all A ∈ ∆ and γo(AB) = 0(Co)AB , whenever
A , B, for all A, B ∈ ∆ .

In practice, we have just a bundle, over a finite set, of full one-dimensional C*-cat-
egories with the same finite set of objects ∆ and the propagator γ is trivial, hence there
is exactly only one frame for every point of X.

6 Preview of Topological/Uniform Duality

In this last section, we briefly look beyond the discrete non-commutative Gel’fand-
Naı̆mark duality, in the direction of the topological/uniform theory fully developed in
the companion second paper [6], anticipating some of the typical technical difficulties
that will be dealt with there.

In principle, a topological version of “base duality” as in section 3 already exists,
since J.Dauns-K.-H.Hofmann theorem [10, 12] and J.Varela duality [30] can deal with
arbitrary (unital) C*-algebras. Unfortunately, the type of Banach C*-bundles (with
semi-continuous norm) appearing there as spectra, have fibers that in general are not
primitive C*-algebras, making it quite difficult to perform the subsequent spectral
analysis necessary for the “fiber duality” of section 4. This serious issue will force
us to introduce, for such general case, a new topology on XA making it compact pre-
regular (actually completely regular).

Whenever the structure space Â (the set XA with the quotient topology induced by
the weak*-topology on PA) is compact Hausdorff, Varela duality and Dauns-Hofmann
theorem reduce to a previous duality result by J.M.G.Fell [14, 15]: the spectra are just
usual Banach C*-bundles (with continuous norm) with fibers that are always primitive
C*-algebras and hence there is no problem to proceed to the second stage of “fiber
duality” as in section 4, as soon as suitable topologies are imposed on the discrete
spaceoids. The standard choice of topologies will be to equip:

• PA with its weak*-topology, as subspace of A∗ := B(A;C), the Banach dual
space of A,

46This corresponds to the “first picture” for “topological spaceoids” in [4].
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• PA ×χA PA ⊂ PA × PA with the subspace topology of the product weak*-
topology on PA × PA,

• EA with the tubular topology induced by the family of Gel’fand transforms
x̂ : PA ×χA PA → EA.

Unfortunately, the space PA (and even (PA)o := χ−1
A

(o), for o ∈ XA) with
the weak*-topology is not always compact, a well-known problem that (at least in
those approaches to spectral theory, reconstructing C*-algebras via continuous func-
tions/sections on the space of pure states, see for example the works by R.Cirelli-
A.Manià-L.Pizzocchero [8] and N.Landsman [21, 22]) requires the introduction of
suitable uniformities. This will force us, in the general case, to work with “uniform
spaceoids” defined as uniform bundles of “uniform propagators” (with γ uniformly
continuous with values in a “uniform Fell line-bundle”) instead of just bundles of
1-C*-category-valued propagators, as we did in section 4.47

Whenever Â is (compact) Hausdorff and the C*-algebra A has only finite-dimen-
sional irreducible representations, A.J.Lazar [23] has described a specific form of
Dauns-Hofmann theorem where the spectra are “scaled” Banach bundles over Â, with
fibers primitive finite-dimensional C*-algebras. Since in this case (PA)o is compact
for all o ∈ XA = Â, and since for every γo-frame F the restriction of the (uniform)
propagator (EA)|F is a 1-C*-category, the techniques already contained in section 4
immediately allow to obtain the correct fiber duality and a non-commutative Gel’fand-
Naı̆mark spectral analysis.
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