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Abstract

A generalized hypersubstitution of type τ = (n) is a mapping σ which
maps the n-ary operation symbol f to the term σ(f) which does not nec-
essarily preserve the arity. The set of all generalized hypersubstitutions
of type τ = (n) together with a binary operation defined on this set and
the identity hypersubstitution σid which maps f to the term f(x1, ..., xn)
forms a monoid. Our motivation in this paper, is to determine all maxi-
mal completely regular submonoids of this monoid.

1 Monoid of all Generalized Hypersubstitutions

In Universal Algebra, identities are used to classify algebras into collections
called varieties. Hyperidentities are used to classify varieties into collections
called hypervarieties. The tool which is used to study hyperidentities and
hypervarieties is the concept of a hypersubstitution. The notion of a hypersub-
stitution was introduced by K. Denecke, D. Lau, R. Pöschel and D. Schweigert
([2]). In 2000, S. Leeratanavalee and K. Denecke generalized the concepts of
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a hypersubstitution and a hyperidentity to the concepts of a generalized hy-
persubstitution and a strong hyperidentity, respectively ([4]). The set of all
generalized hypersubstitutions together with a binary operation and the iden-
tity hypersubstitution forms a monoid.

Let X := {x1, x2, ...} be the set of countably infinite variables and Xn :=
{x1, x2, ..., xn} which n ∈ N is an n-element set. Let {fi|i ∈ I} be a set of
ni-ary operation symbols indexed by the set I. Every ni is called the arity of
fi and the sequence τ := (ni)i∈I of arities of fi is called the type. An n-ary
term of type τ is defined inductively, as follows

(i) Every xj ∈ Xn is an n-ary term of type τ ;
(ii) If t1, t2, ..., tni are n-ary terms of type τ , then fi(t1, t2, ..., tni) is an n-ary

term of type τ .
The smallest set, which contains x1, x2, ..., xn and is closed under finite

application of (ii), is denoted by Wτ (Xn) and it is called the set of all n-ary
terms of type τ . It is clear that every n-ary term is also an m-ary term for all
m ≥ n. Let Wτ (X) = ∪∞

n=1Wτ (Xn) be the set of all terms of type τ .
A generalized hypersubstitution of type τ = (ni)i∈I is a mapping σ : {fi|i ∈

I} → Wτ (X), which does not necessarily preserve the arity. We denote the
set of all generalized hypersubstitutions of type τ by HypG(τ ). To define a
binary operation on the set of all generalized hypersubstitutions of type τ , we
need the concept of a generalized superposition of terms and the extension of
a generalized hypersubstitution, which are defined as follows.

Definition 1.1. ([4]) A generalized superposition of terms is a mapping
Sn : Wτ (X)n+1 → Wτ (X) such that

(i) Sn (xj, t1, ..., tn) = tj, if 1 ≤ j ≤ n;
(ii) Sn (xj, t1, ..., tn) = xj, if n < j;
(iii) Sn (t, t1, ..., tn) = fi(Sn (s1, t1, ..., tn) , ..., Sn (sni , t1, ..., tn)),

if t = fi(s1 , ..., sni).

We extend every generalized hypersubstitution σ to a mapping σ̂ : Wτ (X) →
Wτ (X) such that

(i) σ̂[xj] = xj ∈ X;
(ii) σ̂[fi(t1, t2, ..., tni)] = Sni(σ(fi), σ̂[t1], ..., σ̂[tni ]) for any ni-ary operation

symbol fi and suppose that σ̂[tj], 1 ≤ j ≤ ni are already defined.
We define a binary operation ◦G on HypG(τ ) by σ ◦G α := σ̂ ◦ α where ◦

denotes the usual composition of mappings and σ, α ∈ HypG(τ ). Let σid be
the hypersubstitution which maps each ni-ary operation symbol fi to the term
fi(x1, x2, ..., xni).

In 2000, S. Leeratanavalee and K. Denecke proved that for arbitrary terms
t, t1, t2, ..., tn ∈ Wτ (X) and for arbitrary generalized hypersubstitutions σ, α
∈ HypG(τ ), we have

(i) Sn(σ̂[t], σ̂[t1], ..., σ̂[tn]) = σ̂[Sn(t, t1, ..., tn)];
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(ii) (σ̂ ◦ α)̂ = σ̂ ◦ α̂.
Using the previous result, S. Leeratanavalee and K. Deneeke proved that

HypG(τ ) := (HypG(τ ), ◦G, σid) is a monoid (for more detail in HypG(τ ) see
[4]).

2 All maximal completely regular submonoids
of HypG(n)

The semigroup structure is studied in many fields of Mathematics. More-
over, semigroup theory is used to study formal language and automata theory
in Theoretical Computer Science. There are many researchers study on some
special elements of semigroup such as regular, left regular, right regular and
completely regular elements. The main result of this paper is to determine
the set of all maximal completely regular submonoids of the monoid of all
generalized hypersubstitutions of type τ = (n).

Henceforth, we introduce some notations which will be used throughout this
paper. For a type τ = (n) with an n-ary operation symbol f and t ∈ W(n)(X),
we denote

σt := the generalized hypersubstitution of type τ = (n) which maps f to
the term t;

leftmost(t) := the first variable (from the left) occurs in t;
rightmost(t) := the last variable occurs in t;
var(t) := the set of all variables occur in t.

Next, we recall some definitions which will be used throughout this paper.

Definition 2.1. ([5]) Let t ∈ W(n)(X) and i ∈ N which 1 ≤ i ≤ n, an
i − most(t) is defined inductively as follows:

(i) if t is a variable, then i − most(t) = t;
(ii) if t = f(t1 , ..., tn), then i − most(t) = i − most(ti).

Example 2.2. Let τ = (3) be a type and t = f(x2, f(x8, x5, x3), f(x1, x6, x4)).
Then 1 − most(t) = x2, 2 − most(t) = 2 − most(f(x8 , x5, x3)) = x5 and
3 − most(t) = 3 − most(f(x1 , x6, x4)) = x4 .

Note that for τ = (n), 1 − most(t) = leftmost(t) and n − most(t) =
rightmost(t).

Definition 2.3. ([3]) Let S be a semigroup. An element a of a semigroup S
is called completely regular if there exists b ∈ S such that a = aba and ab = ba.

Let σt ∈ HypG(n), we denote
R1 := {σxi |xi ∈ X};
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R2 := {σt|t ∈ W(n)(X) \ X and var(t) ∩ Xn = ∅};
CR(R3) := {σt|t = f(t1, ..., tn) where ti1 = xπ(i1), ..., tim = xπ(im) and π is

a bijective map on {i1, ..., im} for some i1, ..., im ∈ {1, ..., n} and var(t)∩Xn =
{xπ(i1), ..., xπ(im)}}.

In 2013, A. Boonmee and S. Leeratanavalee proved the following theorem.

Theorem 2.4. ([1]) CR(HypG(n)) := CR(R3) ∪ R1 ∪ R2 is the set of all
completely regular elements in HypG(n).

Remark It is easily to see that R1, R2, CR(R3) are pairwise disjoint and R1, R2

are subsemigroups of HypG(n) but CR(R3) is not a submonoid of HypG(n).

Example 2.5. Let τ = (3) be a type. That means we have only one ternary
operation symbol, say f . Let σs, σt ∈ CR(R3) where t = f(x3, x6, x1) and
s = f(f(x2 , x5, x3), x3, x2). Consider

(σt ◦G σs)(f) = σ̂t[f(f(x2 , x5, x3), x3, x2)]

= S2(σt(f), σ̂t[f(x2, x5, x3)], σ̂t[x3], , σ̂t[x2])

= S2(σt(f), S3(σt(f), σ̂t[x2], σ̂t[x5], σ̂t[x3]), x3, x2)

= S3(σt(f), S3(f(x3, x6, x1), x2, x5, x3), x3, x2)

= S3(f(x3 , x6, x1), f(x3, x6, x2), x3, x2)
= f(x2, x6, f(x3, x6, x2)).

Thus σt ◦G σs /∈ CR(R3), so CR(R3) is not closed under ◦G.

Next, let σt ∈ HypG(n), we denote
CR1(R3) := {σt|t = f(xπ(1), ..., xπ(n)) where π is a bijective map on {1, ..., n}}.
E := {σt|t = f(t1, ..., tn) where ti1 = xi1 , ..., tim = xim for some i1, ..., im ∈
{1, ..., n} and var(t) ∩ Xn = {xi1, ..., xim} and if xil ∈ var(tk) for some l ∈
{1, ..., m} and k ∈ {1, ..., n}\{i1, ..., im}, then j −most(tk) 	= xil for all j 	= il}.

For any ∅ 	= I ⊂ {1, ..., n}, let
CRI(R3) := {σt|t = f(t1 , ..., tn) where ti = xπ(i) for all i ∈ I and π is a

bijective map on I, var(t) ∩ Xn = {xπ(i)|i ∈ I}}.
CR′

I(R3) := {σt|t = f(t1, ..., tn) where ti = xπ(i); π(i) ∈ I for all i ∈ I and
tk = xπ(k) for all k ∈ {1, ..., n} \ I and π is a bijective map on {1, ..., n}}.
We let

(MCR)HypG(n) := R1 ∪ R2 ∪ CR1(R3),
(MCR1)HypG(n) := R1 ∪ R2 ∪ E and
(MCRI)HypG(n) := R1 ∪ R2 ∪ CRI(R3) ∪ CR′

I(R3) ∪ {σid}.
Theorem 2.6. (MCR)HypG(n) is a completely regular submonoid of HypG(n).
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Proof. By Theorem 2.4, we have every element in (MCR)HypG(n) is completely
regular. Next we show that (MCR)HypG(n) is closed under ◦G. Let σt, σs ∈
(MCR)HypG(n) = R1 ∪ R2 ∪ CR1(R3). Since R1, R2 are closed under ◦G, we
will check for closedness only the following cases.

Case 1: σt ∈ R1, σs ∈ R2 ∪ CR1(R3). Then t = xi ∈ X.
If σs ∈ R2, then s = f(s1 , ..., sn) where var(s) ∩Xn = ∅. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]
= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])
= Sn(xi, σ̂t[s1], ..., σ̂t[sn])

=

{
σ̂t[si], if i ∈ {1, ..., n};
xi, if i > n.

For 1 ≤ i ≤ n, since t = xi, we have σ̂t[si] = i − most(si) ∈ X. Hence
σt ◦G σs ∈ R1 ⊂ (MCR)HypG(n).

If σs ∈ CR1(R3), then s = f(xπ(1), ..., xπ(n)) where π is a bijective map on
{1, ..., n}. Consider

(σt ◦G σs)(f) = σ̂t[f(xπ(1), ..., xπ(n))]
= Sn(σt(f), σ̂t[xπ(1)], ..., σ̂t[xπ(n)])
= Sn(xi, xπ(1), ..., xπ(n))

=

{
xπ(i), if i ∈ {1, ..., n}
xi, if i > n.

Hence σt ◦G σs ∈ R1 ⊂ (MCR)HypG(n).
Case 2: σt ∈ R2, σs ∈ R1 ∪CR1(R3). Then t ∈ W(n)(X) \ X and var(t) ∩

Xn = ∅.
If σs ∈ R1, then σt ◦G σs ∈ R1 ⊂ (MCR)HypG(n).
If σs ∈ CR1(R3), then s = f(xπ(1), ..., xπ(n)) where π is a bijective map on

{1, ..., n}. Consider

(σt ◦G σs)(f) = σ̂t[f(xπ(1), ..., xπ(n))]
= Sn(σt(f), σ̂t[xπ(1)], ..., σ̂t[xπ(n)])
= Sn(f(t1 , ..., tn), xπ(1), ..., xπ(n))
= f(t1 , ..., tn) since var(t) ∩ Xn = ∅.

Hence σt ◦G σs ∈ R2 ⊂ (MCR)HypG(n).
Case 3: σt ∈ CR1(R3), σs ∈ R1∪R2∪CR1(R3). Then t = f(xπ1(1), ..., xπ1(n))

where π1 is a bijective map on {1, ..., n}.
If σs ∈ R1, then σt ◦G σs ∈ R1 ⊂ (MCR)HypG(n).
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If σs ∈ R2, then s = f(s1 , ..., sn) where var(s) ∩ Xn = ∅. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]
= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])
= Sn(f(xπ(1), ..., xπ(n)), σ̂t[s1], ..., σ̂t[sn])
= f(σ̂t[sπ(1)], ..., σ̂t[sπ(n)]).

Since var(σ̂t[si]) ∩ Xn = ∅ ∀i ∈ {1, ..., n}, we have σt ◦G σs ∈ R2 ⊂
(MCR)HypG(n).

If σs ∈ CR1(R3), then s = f(xπ2(1), ..., xπ2(n)) where π2 is a bijective map
on {1, ..., n}. Consider

(σt ◦G σs)(f) = σ̂t[f(xπ2(1), ..., xπ2(n))]
= Sn(σt(f), σ̂t[xπ2(1)], ..., σ̂t[xπ2(n)])
= Sn(f(xπ1(1), ..., xπ1(n)), xπ2(1), ..., xπ2(n))
= f(xπ2(π1(1)), ..., xπ2(π1(n)))
= f(x(π2◦π1)(1), ..., x(π2◦π1)(n)).

Since π1 ◦ π2 is a bijective map on {1, ..., n}, we have σt ◦G σs ∈ CR1(R3).
Therefore (MCR)HypG(n) is a completely regular submonoid of HypG(n). �

Theorem 2.7. (MCR1)HypG(n) is a completely regular submonoid of HypG(n).

Proof. By Theorem 2.4, we have every element in (MCR1)HypG(n) is com-
pletely regular. Next we show that (MCR1)HypG(n) is closed under ◦G. Let
σt, σs ∈ (MCR1)HypG(n) = R1 ∪R2 ∪E. Since R1, R2 are closed under ◦G, we
will check for closeness only the following cases.

Case 1: σt ∈ R1, σs ∈ R2 ∪ E. We can prove similarly as in Case 1 of
Thorem 2.6, and conclude that σt ◦G σs ∈ R1 ⊂ (MCR1)HypG(n).

Case 2: σt ∈ R2, σs ∈ R1 ∪ E. We can prove similarly as in Case 2 of
Thorem 2.6, and conclude that σt ◦G σs ∈ R2 ⊂ (MCR1)HypG(n).

Case 3: σt ∈ E, σs ∈ R1 ∪ R2 ∪ E. Then t = f(t1 , ..., tn) where ti1 =
xi1, ..., tim = xim for some i1, ..., im ∈ {1, ..., n} and var(t)∩Xn = {xi1 , ..., xim}
and if xil ∈ var(tk) for some l ∈ {1, ..., m} and k ∈ {1, ..., n}\{i1, ..., im}, then
j − most(tk) 	= xil for all j 	= il.

If σs ∈ R1, then σt ◦G σs ∈ R1 ⊂ (MCR1)HypG(n).
If σs ∈ R2, then s = f(s1 , ..., sn) where var(s) ∩ Xn = ∅. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]
= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])
= Sn(f(t1, ..., tn), σ̂t[s1], ..., σ̂t[sn])
= f(w1 , ..., wn) where wi = Sn(ti, σ̂t[s1], ..., σ̂t[sn])
for all i ∈ {1, .., n}.
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Since var(σ̂t[si]) ∩ Xn = ∅ ∀i ∈ {1, ..., n}, we have σt ◦G σs ∈ R2 ⊂
(MCR1)HypG(n).

If σs ∈ E, then s = f(s1 , ..., sn) where sp1 = xp1 , ..., spm′ = xpm′ for some
p1, ..., pm′ ∈ {1, ..., n} and var(s) ∩ Xn = {xp1 , ..., xpm′} and if xpl′ ∈ var(sk′ )
for some l′ ∈ {1, ..., m′} and k′ ∈ {1, ..., n}\{p1, ..., pm′}, then j′ − most(sk′ ) 	=
xpl′ for all j′ 	= pl′ . Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]
= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])
= Sn(f(t1, ..., tn), σ̂t[s1], ..., σ̂t[sn])
= f(w1 , ..., wn) where wi = Sn(ti, σ̂t[s1], ..., σ̂t[sn])
for all i ∈ {1, .., n}.

Case 1: var(tk)∩Xn = ∅ for all k ∈ {1, ..., n}\{i1, ..., im} and var(sk′ )∩Xn = ∅

for all k′ ∈ {1, ..., n}\{p1, ..., pm′}.
Case 1.1: i ∈ {1, ..., n}\{i1, ..., im}. Then wi = Sn(ti, σ̂t[s1], ..., σ̂t[sn]) = ti.
Case 1.2: i ∈ {i1, ..., im}. Then wi = Sn(ti, σ̂t[s1], ..., σ̂t[sn]) = σ̂t[si].
If i ∈ {1, ..., n}\{p1, ..., pm′}, then var(wi) ∩ Xn = ∅. If i ∈ {p1, ..., pm′},

then wi = xi. By Case 1.1, 1.2, we have σt ◦ σs ∈ (R2 ∪E) ⊂ (MCR1)HypG(n).
Case 2: var(tk)∩Xn = ∅ for all k ∈ {1, ..., n}\{i1, ..., im} and there exists xpl′ ∈
var(sk′) for some l′ ∈ {1, ..., m′}, for all k′ ∈ {1, ..., n}\{p1, ..., pm′}. It can be
proved similarly as in Case 1. Hence σt ◦ σs ∈ (R2 ∪ E) ⊂ (MCR1)HypG(n).
Case 3: There exists xil ∈ var(tk) for some l ∈ {1, ..., m}, for all
k ∈ {1, ..., n}\{i1, ..., im} and there exists xpl′ ∈ var(sk′ ) for some l′ ∈ {1, ..., m′},
for all k′ ∈ {1, ..., n}\{p1, ..., pm′}.

Case 3.1: i ∈ {i1, ..., im}. Then wi = σ̂t[si].
For i ∈ {p1, ..., pm′}, we have wi = xi.
For i = k′, we have wi = σ̂t[si]. If il = pl′ , then wil = xil . If il 	= pl′ , then

var(wi) ∩ {xil} = ∅.
For i ∈ {1, ..., n}\{p1, ..., pm′, k′}. Then var(wi) ∩ Xn = ∅.
Case 3.2: i ∈ {1, ..., n}\{i1, ..., im, k}. Then var(wi) ∩ Xn = ∅. By Case

3.1,3.2, we have σt ◦ σs ∈ (R2 ∪ E) ⊂ (MCR1)HypG(n). �
Theorem 2.8. (MCRI)HypG(n) is a completely regular submonoid of HypG(n).

Proof. By Theorem 2.4, we have every element in (MCRI)HypG(n) is com-
pletely regular. Next we show that (MCRI)HypG(n) is closed under ◦G. Let
σt, σs ∈ (MCRI)HypG(n) = R1∪R2∪CRI(R3)∪CR′

I(R3)∪{σid}. Since R1, R2

are closed under ◦G and σid is an identity element, we will check for closeness
only the following cases.

Case 1: σt ∈ R1, σs ∈ R2∪CRI(R3)∪CR′
I(R3). We can prove similarly as

in Case 1 of Thorem 2.6, and conclude that σt ◦G σs ∈ R1 ⊂ (MCRI)HypG(n).
Case 2: σt ∈ R2, σs ∈ R1∪CRI(R3)∪CR′

I(R3). We can prove similarly as
in Case 2 of Thorem 2.6, and conclude that σt ◦G σs ∈ R2 ⊂ (MCRI)HypG(n).
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Case 3: σt ∈ CRI(R3), σs ∈ R1 ∪ R2 ∪ CRI(R3) ∪ CR′
I(R3). Then t =

f(t1, ..., tn) where ti = xπ1(i) for all i ∈ I and π1 is a bijective map on I,
var(t) ∩ Xn = {xπ(i) | i ∈ I}.

If σs ∈ R1, then σt ◦G σs ∈ R1 ⊂ (MCRI)HypG(n).
If σs ∈ R2, then s = f(s1 , ..., sn) where var(s) ∩ Xn = ∅. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]
= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])
= Sn(f(t1, ..., tn), σ̂t[s1], ..., σ̂t[sn])
= f(w1 , ..., wn) where wi = Sn(ti, σ̂t[s1], ..., σ̂t[sn])
for all i ∈ {1, .., n}.

Since var(σ̂t[si]) ∩ Xn = ∅ for all i ∈ {1, ..., n}, we have σt ◦G σs ∈ R2 ⊂
(MCRI)HypG(n).

If σs ∈ CRI(R3), then s = f(s1 , ..., sn) where si = xπ2(i) for all i ∈ I and
π2 is a bijective map on I, var(s) ∩ Xn = {xπ2(i) | i ∈ I}. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]
= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])
= Sn(f(t1, ..., tn), σ̂t[s1], ..., σ̂t[sn])
= f(w1, ..., wn) where wi = Sn(ti, σ̂t[s1], ..., σ̂t[sn])
for all i ∈ {1, .., n}.

For any il ∈ I, since π1, π2 are bijective maps on I there exist ip, iq ∈ I
such that π1(il) = ip and π2(ip) = iq . Then wil = Sn(til , σ̂t[s1], ..., σ̂t[sn]) =
Sn(xπ1(il), σ̂t[s1], ..., σ̂t[sn]) = σ̂t[sip ] = σ̂t[xπ2(ip)] = xiq .

For any j ∈ {1, ..., n} \ I, let tj = f(u1, ..., un). Consider

wj = Sn(tj , σ̂t[s1], ..., σ̂t[sn])
= Sn(f(u1 , .., un), σ̂t[s1], ..., σ̂t[sn])
= f(w′

1, ..., w
′
n) where w′

k = Sn(tk, σ̂t[s1], ..., σ̂t[sn])
for all k ∈ {1, .., n}.

If var(uk) ∩ Xn = ∅, then w′
k = uk. If uk = xπ1(il) and π1(il) =

ip, π2(ip) = iq , then w′
k = Sn(uk, σ̂t[s1], ..., σ̂t[sn]) = Sn(xπ1(il), σ̂t[s1], ..., σ̂t[sn]) =

σ̂t[sip ] = xπ2(ip) = xiq ; iq ∈ I. Hence σt ◦G σs ∈ CRI(R3) ⊂ (MCRI)HypG(n).
If σs ∈ CR′

I(R3), we can prove as in the previous proof. Hence σt ◦G σs ∈
CRI(R3) ⊂ (MCRI)HypG(n).

Case 4: σt ∈ CR′
I(R3), σs ∈ R1 ∪ R2 ∪ CRI(R3) ∪ CR′

I(R3). It can be
proved similarly as in Case 3. Hence σt ◦G σs ∈ (MCRI)HypG(n). Therefore
(MCRI)HypG(n) is a completely regular submonoid of HypG(n). �
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Theorem 2.9. (MCR)HypG(n) is a maximal completely regular submonoid of
HypG(n).

Proof. Let K be a proper completely regular submonoid of HypG(n) such that
(MCR)HypG(n) ⊆ K ⊂ HypG(n). Let σt ∈ K where σt ∈ CR(R3) \ CR1(R3).
Then t = f(t1, ..., tn) where til = xπ(il) for all il ∈ I and π is a bijective
map on I, var(t) ∩ Xn = {xπ(il) | il ∈ I}. Choose σs ∈ CR1(R3) such that
s = f(xπ′(1), ..., xπ′(n)) where π′ is a bijective map on {1, ..., n} and π′ =
(π′(1)...π′(n)) is a cycle. Consider

(σt ◦G σs)(f) = σ̂t[f(xπ′(1), ..., xπ′(n))]
= Sn(σt(f), σ̂t[xπ′(1)], ..., σ̂t[xπ′(n)])
= Sn(f(t1, ..., tn), xπ′(1), ..., xπ′(n))
= f(w1, ..., wn) where wj = Sn(tj, xπ′(1), ..., xπ′(n))
for all j ∈ {1, .., n}.

Since I ⊂ {1, ..., n}, there exist ip ∈ I, iq ∈ {1, ..., n}\I such that π′(ip) = iq
and π(il) = ip, for some il ∈ I, then

wil = Sn(til , σ̂t[xπ′(1)], ..., σ̂t[xπ′(n)])
= Sn(xπ(il), xπ′(1), ..., xπ′(n))
= xπ′(ip)

= xiq .

By Theorem 2.4, σs ◦G σt is not completely regular, so σt ∈ (MCR)HypG(n).
Therefore K ⊆ (MCR)HypG(n) and thus K = (MCR)HypG(n). �
Theorem 2.10. (MCR1)HypG(n) is a maximal completely regular submonoid
of HypG(n).

Proof. Let K be a proper completely regular submonoid of HypG(n) such that
(MCR1)HypG(n) ⊆ K ⊂ HypG(n). Let σt ∈ K, then σt is a completely regular
element.
Case 1: σt ∈ CR1(R3). Then t = f(xπ(1), ..., xπ(n)) where π is a bijective map
on {1, ..., n}.

Case 1.1: t = f(xπ(1), ..., xπ(n)) where π is a bijective map on {1, ..., n} and
(π(1)...π(n)) is a cycle. Choose σs ∈ E then s = f(s1 , ..., sn) where si1 =
xi1, ..., sim = xim and sj ∈ X \ Xn, for all j ∈ {1, ..., n} \ {i1, ..., im}. Consider

(σs ◦G σt)(f) = σ̂s[f(xπ(1), ..., xπ(n))]
= Sn(σs(f), σ̂s[xπ(1)], ..., σ̂s[xπ(n)])
= Sn(f(s1 , ..., sn), xπ(1), ..., xπ(n))
= f(w1, ..., wn) where wj = Sn(sj , xπ(1), ..., xπ(n))
for all j ∈ {1, .., n}.



P. Kunama and S. Leeratanavalee 191

If il ∈ {i1, ..., im}, then wil = xπ(il). Since (π(1)...π(n)) is a cycle, we
have that xπ(il) = xiq ; iq ∈ {i1, ...im}\{il}. If j ∈ {1, ..., n}\{i1, ..., im}, then
wj = sj . By Theorem 2.4, we have σs ◦G σt is not completely regular.

Case 1.2: t = f(xπ(1), ..., xπ(n)) where π is a bijective map on {1, ..., n}
and there is P = {R1, ..., Rl} is a partition of {1, ..., n} such that R1 =
{r11, ..., r1f}, ..., Rl = {rl1, ..., rlh} and (r11...r1f)...(rl1, ..., rlh). Let d ∈ Rk for
some k ∈ {1, ..., l} and |Rk| > 1. Choose σs ∈ E, then s = f(s1 , ..., sn) where
sd = xd and sq ∈ X \ Xn, for all q ∈ {1, ..., n} \ {d}. Consider

(σs ◦G σt)(f) = σ̂s[f(xπ(1), ..., xπ(n))]
= Sn(σs(f), σ̂s[xπ(1)], ..., σ̂s[xπ(n)])
= Sn(f(s1 , ..., sn), xπ(1), ..., xπ(n))
= f(w1, ..., wn) where wj = Sn(sj , xπ(1), ..., xπ(n))
for all j ∈ {1, .., n}.

Then wj = xπ(j) ; q ∈ {1, ..., n}\{i}. Since d ∈ Rk for some k ∈ {1, ..., l}
and |Rk| > 1, we have xπ(j) = xq and wi = si, i ∈ {1, ..., n}\{d}. By Theorem
2.4, we have σs ◦G σt is not completely regular.
Case 2: σt ∈ CRI(R3)\E. Then t = f(t1 , ..., tn) where ti = xπ(i) for all
i ∈ I and π is a bijective map on I, var(t) ∩ Xn = {xπ(i) | i ∈ I}. Choose
σs ∈ E where s = f(xk, ..., xk) for some k ∈ {1, ..., n}\I, xk 	= xπ(i) for all
i ∈ I. Consider

(σt ◦G σs)(f) = σ̂t[f(xk, ..., xk)]
= Sn(σt(f), σ̂t[xk], ..., σ̂t[xk])
= Sn(f(t1 , ..., tn), xk, ..., xk)
= f(w1, ..., wn) where wj = Sn(tj , xk, ..., xk)
for all j ∈ {1, .., n}.

Then wk = t′k where t′k is a new term derived by substituting xil for all il ∈ I
which occur in tk by xk. By Theorem 2.4, we have σs ◦G σt is not completely
regular. Hence σt ∈ (MCR1)HypG(n). Therefore K ⊆ (MCR1)HypG(n) and
thus K = (MCR1)HypG(n). �

Theorem 2.11. (MCRI)HypG(n) is a maximal completely regular submonoid
of HypG(n).

Proof. Let K be a proper completely regular submonoid of HypG(n) such that
(MCRI)HypG(n) ⊆ K ⊂ HypG(n). Let σt ∈ K where σt ∈ CR(R3) \
(CRI(R3)∪CR′

I(R3)∪E) then t = f(t1 , ..., tn) where ti = xπ(i) and π is a bijec-
tive map on {1, ..., n}. Choose σs ∈ CRI(R3) then s = f(s1 , ..., sn) where si =
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xπ′(i) for all i ∈ I and π′ is a bijective map on I, var(s) ∩Xn = {xπ′(i) | i ∈ I}
and sj ∈ X \ Xn for all j ∈ {1, ..., n} \ I. Consider

(σs ◦G σt)(f) = σ̂s[f(xπ(1), ..., xπ(n))]
= Sn(σs(f), σ̂s[xπ(1)], ..., σ̂s[xπ(n)])
= Sn(f(s1 , ..., sn), xπ(1), ..., xπ(n))
= f(w1, ..., wn) where wj = Sn(sj , xπ(1), ..., xπ(n))
for all j ∈ {1, .., n}.

Since I ⊂ {1, ..., n} there exist ip ∈ I, iq ∈ {1, ..., n}\ I such that π(ip) = iq
and π′(ir) = ip; ir ∈ I. Then

wir = Sn(sir , xπ(1), ..., xπ(n))
= Sn(xip , xπ(1), ..., xπ(n))
= xπ(ip)

= xiq .

By Theorem 2.4, σs◦Gσt is not completely regular, so σt ∈ (MCRI)HypG(n).
Therefore K ⊆ (MCRI)HypG(n) and thus K = (MCRI)HypG(n). �

Corollary 2.12. {(MCR)HypG(n), (MCR1)HypG(n)}∪{(MCRI)HypG(n) | ∅ 	=
I ⊂ {1, ..., n}} is the set of all maximal completely regular submonoids of
HypG(n).

Proof. By using Theorem 2.9 to Theorem 2.11, we have {(MCR)HypG(n),

(MCR1)HypG(n)} ∪ {(MCRI)HypG(n) | ∅ 	= I ⊂ {1, ..., n}} is the set of all
maximal completely regular submonoids of HypG(n). �
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[2] K. Denecke, D. Lau, R. Pöschel and D. Schweigert, Hyperidentities, Hyperequational
Classes and Clone Congruences, Contributions to General Algebra, 7(1991), pp. 97-118.

[3] J.M. Howie, “Fundamentals of Semigroup Theory”, Academic Press, London, 1995.

[4] S. Leeratanavalee, K. Denecke, Generalized Hypersubstitutions and Strongly Solid Va-
rieties, General Algebra and Applications, Proc. of the ”59 th Workshop on General
Algebra, ”15 th Conference for Young Algebraists Potsdam 2000”, Shaker Verlag, pp.
135-145 (2000).

[5] W. Wongpinit, S. Leeratanavalee, All Maximal Idempotent Submonoids of HypG(n),
Surveys in Mathematics and its Applications, 10(2015), pp. 41-48.


