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Abstract

In this paper, we apply a version of Kakutani’s fixed point theorem to
study weak and Pareto quasi-equilibrium problems. Some sufficient con-
ditions on the existence of solutions of weak and Pareto quasi-equilibrium
problems with multivalued mappings are shown. As applications, we give
several results on the existence of solutions to vector quasivariational in-
equalities problems and vector Pareto quasi-saddle problems.

1 Introduction

Let D be a nonempty subset in a real topological vector space X and f :
D×D → R be a function such that f(x, x) = 0, for all x ∈ D. The problem of
finding

x̄ ∈ D, such that f(x̄, x) ≥ 0, for all x ∈ D,

is call a scalar equilibrium problem. This problem generalizes many well-known
problems in the optimization theory such as variational inequalities, fixed point
problems, complementarity problems, saddle point problems, minimax prob-
lems (see [2], [5], [8], [10], [13]).

Key words: Quasi-equilibrium problems, quasivariational inequalities problems, quasi-
saddle problems, upper and lower C-convex, upper and lower C-quasiconvex-like multivalued
mappings, upper and lower C- continuous multivalued mappings, C-pseudomonotone and C-
strong pseudomonotone multivalued mappings.
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Now, let X, Y and Z be Hausdorff locally convex topological vector spaces,
let D ⊂ X, K ⊂ Z be nonempty subsets and let C ⊂ Y be a cone. We denote
l(C) = C ∩ (−C). If l(C) = {0} , C is said to be pointed. In this paper, we
assume that C is a convex closed pointed cone in Y . Given the following
multivalued mappings

S : D × K → 2D,

T : D × K → 2K ,

F : K × D × D → 2Y ,

we consider the following quasi-equilibrium problems:
(PQEP), Pareto quasi-equilibrium problem: Find (x̄, ȳ) ∈ D×K such that

x̄ ∈ S(x̄, ȳ),

ȳ ∈ T (x̄, ȳ),

F (ȳ, x̄, x) �⊆ −C\{0}, for all x ∈ S(x̄, ȳ).

(WQEP), Weak quasi-equilibrium problem: Find (x̄, ȳ) ∈ D×K such that

x̄ ∈ S(x̄, ȳ),

ȳ ∈ T (x̄, ȳ),

F (ȳ, x̄, x) �⊆ -int(C), for all x ∈ S(x̄, ȳ).

The above problems are natural generalizations of the above scalar equilib-
rium problem (see [3], [7], [12]). The purpose of this paper is to prove some
new results on the existence of solutions to weak and Pareto quasi-equilibrium
problems.

2 Preliminaries

Throughout this paper, X, Y and Z we denote real Hausdorff locally convex
topological vector spaces. The space of real numbers is denoted by R. Given a
subset D ⊂ X, we consider a multivalued mapping F : D → 2Y . The definition
domain and the graph of F are denoted by

domF = {x ∈ D : F (x) �= ∅} ,

Gr(F ) = {(x, y) ∈ D × Y : y ∈ F (x)} ,

respectively. We recall that F is said to be a closed mapping if the graph
Gr(F ) of F is a closed subset in the product space X×Y and it is said to be a
compact mapping if the closure F (D) of its range F (D) is a compact set in Y .
A multivalued mapping F : D → 2Y is said to be upper(lower) semicontinuous
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in x̄ ∈ D if for each open set V containing F (x̄) (respectively, F (x̄) ∩ V �= ∅)
there exists an open set U of x̄ such that F (x) ⊆ V (respectively, F (x)∩V �= ∅)
for all x ∈ U.
Now, let Y be a Hausdorff locally convex topological vector space with a cone
C. Firstly, we recall the following definitions which will be used in the main
results.

Definition 2.1. Let F : D → 2Y be a multivalued mapping.
(i) F is said to be upper (lower) C–continuous in x̄ ∈ dom F if for any

neighborhood V of the origin in Y there is a neighborhood U of x̄ such that:

F (x) ⊆ F (x̄) + V + C

(F (x̄) ⊆ F (x) + V − C, respectively)

holds for all x ∈ U ∩ domF .
(ii) If F is upper C–continuous and lower C–continuous in x̄ simultaneously,

we say that it is C–continuous in x̄.
(iii) If F is upper, lower,. . . , C–continuous in any point of domF , we say

that it is upper, lower,. . . , C–continuous on D.
(iv) In the case C = {0}, a trivial one in Y , we shall only say that F

is upper, lower continuous instead of upper, lower 0-continuous. And, F is
continuous if it is upper and lower continuous simultaneously.

Definition 2.2. Let F be a multivalued mapping from D to 2Y . We say that:
(i) F is upper (lower) C-convex on D if for any x1, x2 ∈ D, t ∈ [0, 1], we

have:
tF (x1) + (1 − t)F (x2) ⊆ F (tx1 + (1 − t)x2) + C

(respectively, F (tx1 + (1 − t)x2) ⊆ tF (x1) + (1 − t)F (x2) − C).

(ii) F is upper (lower) C-quasiconvex-like on D if for any x1, x2 ∈ D, α ∈
[0, 1], either

F (x1) ⊆ F (αx1 + (1 − α)x2) + C

or,
F (x2) ⊆ F (αx1 + (1 − α)x2) + C

(respectively, either F (αx1 + (1 − α)x2) ⊆ F (x1) − C

or,
F (αx1 + (1 − α)x2) ⊆ F (x2) − C)

holds.

In [6], Ferro has some examples to show that there is a upper (lower) C-
convex multivalued mapping which is not upper (lower) C-quasiconvex-like
and conversely, there is also a upper (lower) C-quasiconvex-like multivalued
mapping which is not upper (lower) C-convex.
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Definition 2.3. Let F be a multivalued mapping from D to 2Y . We say that:
(i) F is upper (lower) C-hemicontinuous if for any x, y ∈ D, the follow-

ing implication holds: F (αx + (1 − α)y) ∩ C �= ∅ , for all α ∈ (0, 1) implies
that F (y) ∩ C(y) �= ∅ (respectivelly, F (αx + (1 − α)y) �⊆ −intC , for all α ∈
(0, 1) implies thatF (y) �⊆ −intC(y)).

(ii) A multivalued mapping F : D −→ 2Y is said to be upper (lower) hemi-
continuous if for any x, y ∈ D, the multivalued mapping f : [0, 1] −→ 2Y defined
by f(α) = F (αx + (1 − α)y) is upper (respectively, lower) semicontinuous.

Proposition 2.4. (See [5]) Assume that F : D → 2Y is a upper hemicontinu-
ous with nonempty compact values. Then F is upper C-hemicontinuous.

Definition 2.5. Let F : D × D −→ 2Y be a multivalued mapping. We say
that:

(i) F is C- pseudomonotone if for any x, y ∈ D

F (y, x) �⊆ −int(C) =⇒ F (x, y) ⊆ −C.

(ii)F is C- strong pseudomonotone if for any x, y ∈ D

F (y, x) �⊆ −C\{0} =⇒ F (x, y) ⊆ −C.

Remark 2.6. If Y = R, C = R+ and F is a single-valued mapping then
the strongly C- pseudomonotonicity and C- pseudomonotonicity of F become
definition for pseudomonotonicity of F in [11].

Example 2.7. Let D = R, Y = R
2, C = {(t1; t2) : t1 ≥ 0, t2 ∈ R} and

F (x, y) = {(x − y; 0)}. Then F is C- pseudomonotone and C- strong pseu-
domonotone.

Definition 2.8. Let F : D −→ 2D be a multivalued mapping. We say that F
is a KKM mapping if for each {x1, x2, ..., xn} ⊆ D, one has

co{x1, x2, ..., xn} ⊆
n⋃

i=1

F (xi).

The proofs of the following lemmas can be found in [5].

Lemma 2.9. Let F : D × D → 2Y be a multivalued mapping with nonempty
values and F (x, x)∩ C �= ∅ for any x ∈ D. In addition, assume that

(i) For any fixed x ∈ D, F (., x) : D → 2Y is upper C-hemicontinuous;
(ii) F is C-strong pseudomonotone;
(iii) For any fixed x ∈ D, F (x, .) : D → 2Y is lower C-convex ( or, lower

C-quasiconvex-like).
Then, for any y ∈ D, the following are equivalent.
1) F (y, x) �⊆ −C\{0}, for all x ∈ D;
2) F (x, y) ⊆ −C, for all x ∈ D.
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Lemma 2.10. Let F : D × D → 2Y be a multivalued mapping with nonempty
values and F (x, x) �⊆ −intC for any x ∈ D. In addition, assume that

(i) For any fixed x ∈ D, F (., x) : D → 2Y is lower C-hemicontinuous;
(ii) F is C- pseudomonotone;
(iii) For any fixed x ∈ D, F (x, .) : D → 2Y is lower C-convex.
Then, for any y ∈ D, the followings are equivalent:
1) F (y, x) �⊆ −intC, for all x ∈ D;
2) F (x, y) ⊆ −C, for all x ∈ D.

In the proof of the main results in Section 3, we need the following theorems.

Theorem 2.11. (See [4]) Assume that X is a topological vector space, D ⊆ X
is nonempty convex compact and F : D → 2D is a KKM mapping with closed
values. Then, we have ⋂

x∈D

F (x) �= ∅.

Theorem 2.12. (Kakutani fixed point theorem, see [1]) Let D be a nonempty
convex compact subset and F : D → 2D be a multivalued mapping closed with
nonempty convex values. Then there exists x̄ ∈ D such that x̄ ∈ F (x̄).

3 Main Results

Throughout this section, unless otherwise specify, by X, Y and Z we denote
Hausdorff locally convex topological vector spaces. Let D ⊂ X, K ⊂ Z be
nonempty subsets, C is a convex closed pointed cone in Y . Given the following
multivalued mappings

S : D × K −→ 2D,

T : D × K −→ 2K ,

F : K × D × D −→ 2Y ,

we prove that following theorem:

Theorem 3.1. Let D and K be nonempty convex compact subsets of Hausdorff
locally convex topological vector space X and Z, respectively. Assume that the
multivalued mapping F with nonempty values and F (y, x, x) ∩ C �= ∅, for all
(x, y) ∈ D × K. In addition, assume that:

(i) S is a continuous multivalued mapping with nonempty convex closed
values;

(ii) T is a upper semicontinuous multivalued mapping with nonempty convex
closed values;

(iii) For each y ∈ K, F (y, ., .) : D × D → 2Y is C-strong pseudomonotone;
(iv) For any fixed (x, y) ∈ D×K, the multivalued mapping F (y, x, .) : D →

2Y is lower C-convex (or, lower C-quasiconvex-like);
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(v) F is lower C-continuous and for any fixed (y, z) ∈ K × D, F (y, ., z) is
upper C-hemicontinuous.
Then there exists (x̄, ȳ) ∈ D × K such that x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ) and

F (ȳ, x̄, x) �⊆ −C\{0}, for all x ∈ S(x̄, ȳ).

Proof. We define the multivalued mapping M : D × K → 2D by

M(x, y) = {x′ ∈ S(x, y) : F (y, z, x′) ⊆ −C, for all z ∈ S(x, y)}.
For each (x, y) ∈ D×K, we will show that M(x, y) is nonempty set. Indeed, for
each (x, y) ∈ D×K, we define the multivalued mapping Qxy : S(x, y) → 2S(x,y)

by
Qxy(z) = {x′ ∈ S(x, y) : F (y, z, x′) ⊆ −C}.

Let {x′
α} be a net in Qxy(z), x′

α → x′. We have x′
α ∈ S(x, y) and F (y, z, x′

α) ⊆
−C. Since S(x, y) is a closed set, so x′ ∈ S(x, y). On the other hand, F is
lower C-continuous, for any neighborhood V of the origin in Y , there exists an
index α0 such that

F (y, z, x′) ⊆ F (y, z, x′
α) − C + V, for all α ≥ α0.

This implies that
F (y, z, x′) ⊆ −C + V.

Since C is closed, we have

F (y, z, x′) ⊆ −C.

Hence x′ ∈ Qxy(z) and Qxy(z) is closed set.
Now we show that Qxy is a KKM type mapping. If not, then there exists

{x1, x2, ..., xn} ⊆ S(x, y) such that

co{x1, x2, ..., xn} �⊆
n⋃

i=1

Qxy(xi).

Hence there exists x∗ ∈ co{x1, x2, ..., xn} and x∗ �∈ Qxy(xi), for i = 1, 2, ..., n.
This implies

F (y, xi, x
∗) �⊆ −C, for i = 1, 2, ..., n.

Since F (y, ., .) is C-strong pseudomonotone, we deduce that

F (y, x∗, xi) ⊆ −C\{0}, for i = 1, 2, ..., n.

Since F (y, x, .) is lower C-convex (or, lower C-quasiconvex-like), we imply

F (y, x∗, x∗) ⊆ −C\{0}.
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This contradicts with F (y, x, x)∩ C �= ∅. Therefore Qxy is a KKM mapping.
By Theorem 2.11, we have ∩z∈S(x,y)Qxy(z) �= ∅. Hence, there exists x′ ∈

S(x, y) such that F (y, z, x′) ⊆ −C, for all z ∈ S(x, y). Thus, M(x, y) �= ∅.
We show that M(x, y) is convex set. Indeed, let x′

1, x
′
2 ∈ M(x, y) and

t ∈ [0, 1], we have from the convexity of S(x, y), tx′
1 + (1 − t)x′

2 ∈ S(x, y) and

F (y, z, x′
1) ⊆ −C,

F (y, z, x′
2) ⊆ −C, for all z ∈ S(x, y).

Since F (y, x, .) is lower C-convex (or, lower C-quasiconvex-like), we conclude

F (y, z, tx′
1 + (1 − t)x′

2) ⊆ −C, for all z ∈ S(x, y).

This shows tx′
1 + (1 − t)x′

2 ∈ M(x, y) and M(x, y) is a convex set.
Further, we claim that M is a closed multivalued mapping. Let xα →

x, yα → y, x′
α ∈ M(xα, yα), x′

α → x′. We show that x′ ∈ M(x, y). Indeed,
since x′

α ∈ S(xα, yα) and the upper semicontinuity of S with closed values,
x′ ∈ S(x, y). For x′

α ∈ M(xα, yα), we have

F (yα, z, x′
α) ⊆ −C, for all z ∈ S(xα, yα).

For each z ∈ S(x, y), by the lower semicontinuity of S, there exists zα ∈
S(xα, yα) such that zα → z. We have

F (yα, zα, x′
α) ⊆ −C.

Since F is lower C-continuous, for any neighborhood V of the origin in Y , there
exists an index α0 such that

F (y, z, x′) ⊆ F (yα, zα, x′
α) − C + V, for all α ≥ α0.

This implies that
F (y, z, x′) ⊆ −C + V.

Since C is closed, we have

F (y, z, x′) ⊆ −C.

This means that x′ ∈ M(x, y) and M is a closed multivalued mapping.
Lastly, we define the multivalued mapping P : D × K −→ 2D×K by

P (x, y) = M(x, y) × T (x, y)

We can easily verify that P is a closed multivalued mapping with nonempty
convex values. Moreover, since D × K is a compact set, we have that P
is also a upper semicontinuous multivalued mapping with nonempty convex
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closed values. Applying the fixed point theorem of Kakutani type, there exists
(x̄, ȳ) ∈ P (x̄, ȳ). This implies x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ) and

F (ȳ, x, x̄) ⊆ −C, for all x ∈ S(x̄, ȳ).

We use Lemma 2.9 with D replaced by S(x̄, ȳ), we have x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ)
and

F (ȳ, x̄, x) �⊆ −C\{0}, for all x ∈ S(x̄, ȳ).

The proof of the corollary is complete. �
By using Lemma 2.10 and the proof is similar as the one of Theorem 3.1,

we obtain the following result.

Theorem 3.2. Let D and K be nonempty convex compact subsets of Hausdorff
locally convex topological vector space X and Z, respectively. Assume that the
multivalued mapping F with nonempty values and F (y, x, x) �⊆ −int(C), for all
(x, y) ∈ D × K. In addition, assume that:

(i) S is a continuous multivalued mapping with nonempty convex closed
values;

(ii) T is a upper semicontinuous multivalued mapping with nonempty convex
closed values;

(iii) For any fixed y ∈ K, F (y, ., .) : D × D → 2Y is C-pseudomonotone;
(iv) For any fixed (x, y) ∈ D × K, F (y, x, .) : D → 2Y is lower C-convex;
(v) F is lower C-continuous and for any fixed (y, z) ∈ K × D, F (y, ., z) is

lower C-hemicontinuous.
Then there exists (x̄, ȳ) ∈ D × K such that x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ) and

F (ȳ, x̄, x) �⊆ −int(C), for all x ∈ S(x̄, ȳ).

Remark 3.3. The assumption (v) in Theorem 3.1 and Theorem 3.2 can be
replaced by the following condition:

(v’) The set {(x, y, z) ∈ D×K×D : F (y, x, z) ⊆ −C} is closed in D×K×D.

4 System of quasi-equilibrium problems

Now, given D, K, C, S, T as above and G : K×D×D −→ 2Y , H : D×K×K −→
2Y are multivalued mappings with nonempty values. We consider the following
problems:

(SPQEP), System of Pareto quasi-equilibrium problems: Find (x̄, ȳ) ∈ D×
K such that

x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ)

and
G(ȳ, x̄, x) �⊆ −C \ {0}, for all x ∈ S(x̄, ȳ),
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H(x̄, ȳ, y) �⊆ −C \ {0}, for all y ∈ T (x̄, ȳ).

(SWQEP), System of weak quasi-equilibrium problems: Find (x̄, ȳ) ∈ D × K
such that

x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ)

and
G(ȳ, x̄, x) �⊆ −int(C), for all x ∈ S(x̄, ȳ),

H(x̄, ȳ, y) �⊆ −int(C), for all y ∈ T (x̄, ȳ).

Theorem 4.1. Let D and K be nonempty convex compact subsets of Hausdorff
locally convex topological vector space X and Z, respectively. Assume that
the multivalued mappings G, H with nonempty values and G(y, x, x) ∩ C �=
∅, H(x, y, y) ∩ C �= ∅ for all (x, y) ∈ D × K. The following conditions are
sufficient for (SPQEP) to have a solution:

(i) S, T are continuous multivalued mappings with nonempty convex closed
values;

(ii) G(y, ., .), H(x, ., .) are C-strong pseudomonotone, for any fixed (x, y) ∈
D × K;

(iii) G(y, x, .) : D → 2Y , H(x, y, .) : K → 2Y are lower C-convex (or, lower
C-quasiconvex), for every (x, y) ∈ D × K fixed;

(iv) G(y, ., x), H(x, ., y) are upper C-hemicontinuous, for any fixed (x, y) ∈
D × K;

(v) G, H are lower C-continuous.

Proof. We define the multivalued mappings M1 : D×K → 2D, M2 : D×K →
2K by

M1(x, y) = {x′ ∈ S(x, y) : G(y, z, x′) ⊆ −C, for all z ∈ S(x, y)}.
M2(x, y) = {y′ ∈ T (x, y) : H(x, t, y′) ⊆ −C, for all t ∈ T (x, y)}.

Then we can early prove that M1, M2 are closed mappings with nonempty
convex values. Now, we define the multivalued mapping M : D × K → 2D×K

by
M(x, y) = M1(x, y) × M2(x, y).

Then M is closed mapping with nonempty convex. Applying theorem fixed
point Kakutani type, there exists (x̄, ȳ) ∈ D × K such that (x̄, ȳ) ∈ M(x̄, ȳ).
This implies, x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ) and

G(ȳ, x, x̄) ⊆ −C, for all x ∈ S(x̄, ȳ),

H(x̄, y, ȳ) ⊆ −C, for all y ∈ T (x̄, ȳ).

Since G(y, ., .), H(x, ., .) are C-strong pseudomonotone, we have

G(ȳ, x̄, x) �⊆ −C \ {0}, for all x ∈ S(x̄, ȳ),
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H(x̄, ȳ, y) �⊆ −C \ {0}, for all y ∈ T (x̄, ȳ).

The proof of the theorem is complete. �
By exploiting the similar arguments used in the proof of Theorem 4.1, we

obtain the following result.

Theorem 4.2. Assume that D and K are nonempty convex compact subsets of
Hausdorff locally convex topological vector space X and Z, respectively. Let F, G
be set-valued maps with nonempty values and G(y, x, x) �⊆ −int(C), H(x, y, y) �⊆
−int(C) for all (x, y) ∈ D × K. The following conditions are sufficient for
(SWQEP) to have a solution:

(i) S, T are continuous multivalued mappings with nonempty convex closed
values;

(ii) For any fixed (x, y) ∈ D×K, G(y, ., .), H(x, ., .) are C-pseudomonotone;
(iii) For every (x, y) ∈ D × K fixed, the multivalued mappings G(y, x, .) :

D → 2Y , H(x, y, .) : K → 2Y are lower C-convex;
(iv) For any fixed (x, y) ∈ D×K, G(y, ., x), H(x, ., y) are lower C-hemicontinuous;
(v) G, H are lower C-continuous.

5 Applications to vector quasi-variational in-

equalities problems

In this section, we apply the obtained results in Section 3 to vector quasi-
variational inequalities problems with multivalued mappings. Let L(X, Y ) be
the set of all continuous linear mappings from X into Y and f(x) denote the
value of f at x where f ∈ L(X, Y ), x ∈ X. Let D ⊂ X, K ⊂ Z be nonempty
subsets, let φ : D −→ Y be a single valued mapping and S : D×K −→ 2D, T :
D × K −→ 2K, G : D × K −→ 2L(X,Y ) be multivalued mappings. In addition,
assume that C is a pointed convex closed cone in Y . We consider the following
problem:
Vector weak quasi-variational inequalities problem: Find (x̄, ȳ) ∈ D × K such
that

x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ)

and
G(x̄, ȳ)(x − x̄) + φ(x) − φ(x̄) �⊆ −int(C), for all x ∈ S(x̄, ȳ).

Vector Pareto quasi-variational inequalities problem: Find (x̄, ȳ) ∈ D×K such
that

x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ)

and
G(x̄, ȳ)(x − x̄) + φ(x) − φ(x̄) �⊆ −C \ {0}, for all x ∈ S(x̄, ȳ).



Bui The Hung 203

Definition 5.1. Let F : D → 2L(X,Y ) be a multivalued mapping. We say that:
(i) F is C−pseudomonotone with respect to φ if for any given x, z ∈ D

F (x)(x− z) + φ(z) − φ(x) �⊆ −int(C) =⇒ F (z)(z − x) + φ(x) − φ(z) ⊆ −C.

(ii) F is C−strong pseudomonotone with respect to φ if for any given x, z ∈
D

F (x)(x − z) + φ(z) − φ(x) �⊆ −C \ {0} =⇒ F (z)(z − x) + φ(x) − φ(z) ⊆ −C.

Corollary 5.2. Let D, K, S, T be the same as in Theorem 3.1. In addition,
assume that:

(i) The mapping φ is lower C-convex;
(ii) For any fixed y ∈ K, the mapping G(., y) : D → 2L(X,Y ) is C− strong

pseudomonotone with respect to φ;
(iii) For any fixed (y, z) ∈ K×D, the mapping x �−→ G(x, y)(z−x)+φ(z)−

φ(x) is upper C-hemicontinuous;
(iv) The set {(x, y, z) ∈ D × K × D : G(x, y)(z − x) + φ(z) − φ(x) ⊆ −C}

is closed in D × K × D.
Then the above vector Pareto quasi-variational inequalities problem has a

solution.

Proof. The proof of this corollary follows immidiately from Theorem 3.1 and
Remark 3.3 by taking F (y, x, z) = G(x, y)(z − x) + φ(z) − φ(x). �

Corollary 5.3. Let D, K, S, T be the same as in Theorem 3.2. In addition,
assume that:

(i) The mapping φ is lower C-convex;
(ii) For any fixed y ∈ K, the mapping G(., y) : D → 2L(X,Y ) is C−pseudomonotone

with respect to φ;
(iii) For any fixed (y, z) ∈ K×D, the mapping x �−→ G(x, y)(z−x)+φ(z)−

φ(x) is lower C-hemicontinuous;
(iv) The set {(x, y, z) ∈ D × K × D : G(x, y)(z − x) + φ(z) − φ(x) ⊆ −C}

is closed in D × K × D.
Then the above vector weak quasi-variational inequalities problem has a so-

lution.

Proof. The proof of this corollary follows immidiately from Theorem 3.2 and
Remark 3.3 by taking F (y, x, z) = G(x, y)(z − x) + φ(z) − φ(x). �

6 Applications to vector Pareto quasi-saddle prob-

lems

Let D ⊂ X, K ⊂ Z be nonempty subsets, let f : D × K −→ Y be a single
valued mapping and S : D × K −→ 2D, T : D × K −→ 2K be multivalued
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mappings. In addition, assume that C is a pointed convex closed cone in Y
satisfying : Y = C + (−C). We consider the following problem.
Vector Pareto quasi-saddle problem: Find (x̄, ȳ) ∈ D × K such that

x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ)

and
f(x, ȳ) �∈ f(x̄, ȳ) − C \ {0}, for all x ∈ S(x̄, ȳ),

f(x̄, ȳ) �∈ f(x̄, y) − C \ {0}, for all y ∈ T (x̄, ȳ).

Using the results obtained in the previous section, we establish a existence
result for solutions of this problem.

Corollary 6.1. Let D, K, S, T be the same as in Theorem 4.1. In addition,
assume that:

(i) The mapping f is (−C)-continuous and C-continuous;
(ii) For any fixed (x, y) ∈ D × K, the mapping f(., y) : D −→ Y is C-

concave (or, C-quasiconcave-like) and f(x, .) : K −→ Y is C- convex(or, C-
quasiconvex-like).

Then the above vector Pareto quasi-saddle problem has a solution.

Proof. We define the single valued mappings G : K × D × D −→ Y, H :
D × K × K −→ Y by

G(y, x, z) = f(z, y) − f(x, y), H(x, y, t) = f(x, y) − f(x, t).

Then, the vector Pareto quasi-saddle problem becomes to find (x̄, ȳ) ∈ D × K
such that

x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ)

and
G(ȳ, x̄, x) �⊆ −C \ {0}, for all x ∈ S(x̄, ȳ),

H(x̄, ȳ, y) �⊆ −C \ {0}, for all y ∈ T (x̄, ȳ).

First of all, we show that G(y, ., z) is upper C-hemicontinuous. Indeed, assume
that

G(y, αx1 + (1 − α)x2, z) ∩ C �= ∅, for all α ∈ (0, 1).

This implies

[f(z, y) − f(αx1 + (1 − α)x2, y)] ∩ C �= ∅, for all α ∈ (0, 1).

By f is (−C)-continuous, for an arbitrary neighborhood V of the origin in Y ,
we have

f(αx1 + (1 − α)x2, y) ∈ f(x2, y) + V + C.
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This implies
[f(z, y) − f(x2, y) − V − C] ∩ C �= ∅.

Hence, we have
[f(z, y) − f(x2, y) + V ] ∩C �= ∅.

This gives
[f(z, y) − f(x2, y)] ∩ C �= ∅.

Hence, G(y, ., z) is upper C-hemicontinuous. By the similar arguments used in
the above proof, we conclude that H(x, ., t) is upper C-hemicontinuous.

Now, we show that G(y, ., .) is strong C-pseudomonotone. Suppose G(y, x, z) �⊆
−C \ {0} namely, f(z, y) − f(x, y) �∈ −C \ {0} and hence f(x, y) − f(z, y) �∈
C \ {0}. Since Y = C + (−C), we conclude that f(x, y) − f(z, y) ∈ −C. There-
fore G(y, z, x) ⊆ −C. Hence G(y, ., .) is strong C-pseudomonotone. By the
similar arguments used in the above proof, we conclude that H(x, ., .) is strong
C-pseudomonotone.

Next, we show that for any fixed (x, y) ∈ D × K, G(y, x, .) is lower C-
convex (or, lower C-quasiconvex-like). Let z1, z2 ∈ D and α ∈ [0, 1], if f(., y)
is C-concave, then we have

G(y, x, αz1 + (1 − α)z2) = f(αz1 + (1 − α)z2, y) − f(x, y) ∈ αf(z1, y) +
(1 − α)f(z2 , y) − f(x, y) − C = αG(y, x, z1) + (1 − α)G(y, x, z2) − C. Hence
G(y, x, .) is lower C-convex. If f(x, .) is C-quasiconcave-like, we also conclude
that G(y, x, .) is lower C-quasiconvex-like. By the similar arguments used in
the above proof, we conclude that H(x, y, .) is lower C-convex( or, lower C-
quasiconvex-like).

We claim that G is lower C-continuous. Indeed, let (y0 , x0, z0) ∈ K×D×D.
Since f is (−C)-continuous and C-continuous, for an arbitrary neighborhood
V of the origin in Y there exists neighborhoods Ux0 , Uy0 , Uz0 of x0, y0, z0, such
that

f(z0 , y0) ∈ f(z, y) + V − C, for all (z, y) ∈ (Uz0 , Uy0).

f(x0, y0) ∈ f(x, y) + V + C, for all (x, y) ∈ (Ux0 , Uy0).

Then, we have

f(z0 , y0)−f(x0 , y0) ∈ f(z, y)−f(x, y)+V −C, for all (x, y, z) ∈ (Ux0 , Uy0, Uz0).

This mean that

G(y0, x0, z0) ⊆ G(y, x, z) + V − C, for all (x, y, z) ∈ (Ux0 , Uy0 , Uz0).

Hence, G is lower C-continuous. By the similar arguments used in the above
proof, we conclude that H is lower C-continuous.

Applying Theorem 4.1, there exists (x̄, ȳ) ∈ D × K such that

x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ)
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and
G(ȳ, x̄, x) �⊆ −C \ {0}, for all x ∈ S(x̄, ȳ),

H(x̄, ȳ, y) �⊆ −C \ {0}, for all y ∈ T (x̄, ȳ).

This mean that x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ) and

f(x, ȳ) �∈ f(x̄, ȳ) − C \ {0}, for all x ∈ S(x̄, ȳ),

f(x̄, ȳ) �∈ f(x̄, y) − C \ {0}, for all y ∈ T (x̄, ȳ).

The proof of the theorem is complete. � When Y = R, C = R+, we have the
following corollary.

Corollary 6.2. Let D, K, S, T be the same as in Corollary 4.1. In addition,
assume that:

(i) The mapping f : D × K → R is continuous;
(ii) For any fixed (x, y) ∈ D × K, the mapping f(., y) : D −→ R is concave

(or, quasiconcave) and f(x, .) : K −→ R is convex(or, quasiconvex).
Then there exists (x̄, ȳ) ∈ D × K such that

x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ)

and
max

x∈S(x̄,ȳ)
min

y∈T (x̄,ȳ)
f(x, y) = min

y∈T (x̄,ȳ)
max

x∈S(x̄,ȳ)
f(x, y).

References
[1] Browder, F. E., The fixed point theory of multi-valued mappings in topological vector

spaces, Math. Ann., 177, 283-301, 1968.

[2] Aubin, J.-P. and Frankowska H., “Set-valued analysis”, Birkhauser, 1990.

[3] Blum, E. and Oettli, W., From Optimization and Variational Inequalities to Equilibrium
Problems, The Mathematical Student, 64, 1-23, 1993.

[4] Chan D. and Pang J.S., The generalized quasi-variational inequality problem,
Math.Oper. Res, 7, 211-222, 1982.

[5] Duong, T. T. T and Tan, N. X., On the existence of solutions to generalized quasi-
equilibrium problems, J. Glob Optim, 52, No. 4, 711-728, 2012.

[6] Fan, K., A generalization of Tychonoff’s fixed point theorem, Mathematics Annalen,142,
305-310, 1961.

[7] Fan, K., A minimax inequality and application, in Inequalities III, O. Shisha (Ed), Aca-
demic Press, New-York, 103-113, 1972.

[8] F. Ferro,F., A minimax theorem for vector-valued functions, J. Optim. Theory and Appl,
60, 19-31, 1989.

[9] Gurraggio, A. and Tan, N. X., On General Vector Quasi-Optimization Problems,
Math.Oper. Res., 55, 347-358, 2002.

[10] Lin, L.J. , Yu, Z. T. and Kassay, G., Existence of Equilibria for Monotone multivalued
Mappings and Its Applications to Vectorial Equilibria, J. Optim. Theory and Appl., 114,
189-208, 2002.



Bui The Hung 207

[11] D. T. Luc, ”Theory of vector optimization”, Lect. Notes in Eco. and Math. System,
Springer Verlag, Berlin, Germany, 319, 1989.

[12] Minh, N. B. and Tan, N. X., Some Sufficient Conditions for the Existence of Equilibrium
Points Concerning multivalued Mappings, Vietnam Journal of Mathematics, 28, 295-310,
2000.

[13] Park, S., Fixed Points and Quasi-Equilibrium Problems, Nonlinear Operator Theory.
Mathematical and Computer Modelling, 32, 1297-1304, 2000.

[14] Tan, N. X., On the existence of of solutions of quasi-variational inclusion problems, J.
Optim. Theory and Appl., 123, 619-638, 2004.


