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Abstract

In this paper, for finding a zero of a monotone variational inclusion in
Hilbert spaces, we introduce new modifications of the Halpern forward-
backward splitting methods, strong convergence of which is proved under
new condition on the resolvent parameter. We show that these methods
are particular cases of two new methods, introduced for solving a mono-
tone variational inequality problem over the set of zeros of the inclusion.
Numerical experiments are given for illustration and comparison.

1. Introduction The problem, studied in this paper, is to find a zero p of
the following variational inclusion

0 ∈ Tp, T = A + B, (1.1)

where A and B are maximal monotone and A is single valued in a real Hilbert
space H with inner product and norm denoted, respectively, by 〈·, ·〉 and ‖ · ‖.
Throughout this paper, we assume that Γ := (A + B)−10 �= ∅.
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Note that there are two possibilities here: either T is also maximalmonotone
or T is not maximal monotone. A fundamental algorithm for finding a zero for
a maximal monotone operator T in H is the proximal point algorithm: x1 ∈ H
and either

xk+1 = JT
k xk + ek, k ≥ 1, (1.2)

or
xk+1 = JT

k (xk + ek), k ≥ 1, (1.3)

where JT
k = (I + rkT )−1, I is the identity mapping in H , rk > 0 is called

a resolvent parameter and ek is an error vector. This algorithm was firstly
introduced by Martinet [23]. In [26], Rockafellar proved weak convergence of
(1.2) or (1.3) to a point in Γ. In [15], Güler showed that, in general, it converges
weakly in infinite dimensional Hilbert spaces. In order to obtain a strongly
convergent sequence from the proximal point algorithm, several modifications
of (1.2) or (1.3) has been proposed by Kakimura and Takahashi [18], Solodov
and Svaiter [29], Lehdili and Moudafi [19], Xu [38], and then, they were modified
and improved in [1, 2, 4, 9, 12-14, 16, 21 22, 27, 28, 30, 32-36, 40] and references
therein.

In many cases, when T is not maximal monotone, even if T is maximal
monotone, for a fixed rk > 0, I + rkT is hard to invert, but I + rkA and
I + rkB are easier to invert than I + rkT , one of the popular iterative methods
used in this case is the forward-backward splitting method introduced by Passty
[25] which defines a sequence {xk} by

xk+1 = Jk(I − rkA)xk, (1.4)

where Jk = (I + rkB)−1 . Motivated by (1.4), Takahashi, Wong and Yao [31],
for solving (1.1) when A is an α-inverse strongly monotone operator in H ,
introduced the Halpern-type method,

xk+1 = tku + (1 − tk)Jk(I − rkA)xk (1.5)

where u is a fixed point in H , and proved that the sequence {xk}, generated by
(1.5), as k → ∞, converges strongly to a point PΓu, the projection of u onto
Γ, under the following conditions:
(t) tk ∈ (0, 1) for all k ≥ 1, limk→∞ tk = 0 and

∑∞
k=1 tk = ∞;

(t′)
∑∞

k=1 |tk+1 − tk| < ∞; and
(r′) {rk} satisfies

0 < ε ≤ rk ≤ 2α,

∞∑
k=1

|rk+1 − rk| < ∞,

where ε is some small constant. Several modified and improved methods for
(1.1) were presented in [11, 17, 20, 31], strong convergence of which is guaran-
teed under some conditions one of which is (r′). Recently, combining (1.5) and
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the contraction proximal point algorithm [34, 40] with the viscosity approxi-
mation method [24] for nonexpansive operators, an iterative method,

xk+1 = tkf(xk) + (1 − tk)Jk(I − rkA)xk (1.6)

where f is a contraction on H , was investigated in [3], strong convergence of
which is proved under the condition 0 < ε ≤ rk ≤ α. In all the works, listed
above, and references therein, it is easily to see that

∑∞
k=1 rk = ∞. Very

recently, the last condition on rk was replaced by
(r̃) rk ∈ (0, α) for all k ≥ 1 and

∑∞
k=1 rk < +∞

for the method
xk+1 = T k(tku + (1 − tk)xk + ek) (1.7)

and its equivalent form

zk+1 = tku + (1 − tk)T kzk + ek, (1.8)

introduced by the authors [8], where T k = T1T2 · · ·Tk and Ti = Ji(I − riA) for
each i = 1, 2, · · · , k. They proved strongly convergent results under conditions
(t), (r̃),

(e) either
∑∞

k=1 ‖ek‖ < ∞ or limk→0 ‖ek‖/tk = 0 and

(d) ‖Ax‖ and |Bx| ≤ ϕ(‖x‖), where |Bx| = inf{‖y‖ : y ∈ Bx} and ϕ(t) is a
non-negative and non-decreasing function for all t ≥ 0.

It is easily to see that methods (1.7) and (1.8) are quite complicated, when k
is sufficiently large, because the number of forward-backward operators Ti is
increased via each iteration step. Moreover, the second condition on rk in (r̃)
and condition (d) decrease the usage possibility of these methods. To overcome
the drawback, in this paper, we introduce the new method

xk+1 = TkTc(t′ku + (1 − t′k)xk + ek) (1.9)

and its equivalent form

xk+1 = t′ku + (1 − t′k)TkTcx
k + ek, (1.10)

that are simpler than (1.7) and (1.8), respectively, and two new methods,

xk+1 = t′ku + β′
kTcx

k + γ′
kTkxk + ek, (1.11)

and
xk+1 = t′kf(Tcx

k) + β′
kTcx

k + γ′
kJkxk + ek, (1.12)

with some conditions on positive parameters t′k, β′
k and γ′

k, where, as for Tk, the
operator Tc = (I + cB)−1(I − cA) with any sufficiently small positive number
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c, i.e., 0 < c < α. Methods (1.9)-(1.12) contain only two forward-backward
operators Tk and Tc at each iteration step k. As in [8], we will show that (1.9)
with (1.10) and (1.11) with (1.12) are special cases of the methods

xk+1 = TkTc

[
(I − tkF )xk + ek

]
(1.13)

and
xk+1 = βk(I − tkF )Tcx

k + (1 − βk)Tkxk + ek, (1.14)

respectively, to solve the problem of finding a point p∗ ∈ Γ such that

〈Fp∗, p∗ − p〉 ≤ 0 ∀p ∈ Γ, (1.15)

where F : H → H is an η-strongly monotone and γ̃-strictly pseudocontractive
operator with η + γ̃ > 1. The last problem has been studied in [39], recently
[7] in the case that A ≡ 0 and [8] (see, also references therein). We will show
that the sequence {xk}, generated by (1.13) or (1.14), converges strongly to
the point p∗ in (1.15), under conditions (t), (e),
(r) c, rk ∈ (0, α) for all k ≥ 1 and
(β) βk ∈ [a, b] ⊂ (0, 1) for all k ≥ 1.
Clearly, the second requirement in (r̃) and condition (d) are removed for new
simple methods (1.9)-(1.12).

The rest of the paper is organized as follows. In Section 2, we list some
related facts, that will be used in the proof of our results. In Section 3, we prove
strong convergent results for (1.13) with (1.14) and obtain their particular cases
such as (1.9), (1.10), (1.11) and (1.12). A numerical example is given in Section
4 for illustration and comparison.
2. Preliminaries

The following facts will be used in the proof of our results in the next
section.
Lemma 2.1 Let H be a real Hilbert space. Then, the following inequality holds

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H.

Definition 2.1 Recall that an operator T in a real Hilbert space H , satisfying
the conditions 〈Tx − Ty, x − y〉 ≥ η‖x− y‖2 and

〈Tx − Ty, x − y〉 ≤ ‖x− y‖2 − γ̃‖(I − T )x − (I − T )y‖2,

where η > 0 and γ̃ ∈ [0, 1) are some fixed numbers, is said to be η-strongly
monotone and γ̃-strictly pseudocontractive, respectively.

Lemma 2.2 (see, [10]) Let H be a real Hilbert space and let F : H → H be an
η-strongly monotone and γ-strictly pseudocontractive operator with η + γ > 1.
Then, for any t ∈ (0, 1), I − tF is contractive with constant 1 − tτ where τ =
1 − √

(1 − η)/γ.



Nguyen T. Quynh Anh and Pham T. Thu Hoai 17

Definitions 2.2 An operator T from a subset C of H into H is called:

(i) nonexpansive, if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C;
(ii) α-inverse strongly monotone, if α‖Tx − Ty‖2 ≤ 〈Tx − Ty, x − y〉 for all
x, y ∈ C, where α is a positive real number.

We use F ix(T ) = {x ∈ D(T ) : Tx = x} to denote the set of fixed points of
any operator T in H where D(T ) is the domain of T .

Definitions 2.3 Let B : H → 2H and r > 0.

(i) B is called a maximal monotone operator if B is monotone, i.e.,

〈u − v, x − y〉 ≥ 0 for all u ∈ Bx and v ∈ By,

and the graph of B is not properly contained in the graph of any other monotone
mapping;
(ii) D(B) := {x ∈ H : Bx �= ∅} and R(B) = {y ∈ Bx : x ∈ D(B)} are,
respectively, the domain and range of B;
(iii) The resolvent of B with parameter r is denoted and defined by JB

r =
(I + rB)−1.

It is well known that for r > 0,
i) B is monotone if and only if JB

r is single-valued;
ii) B is maximal monotone if and only if JB

r is single-valued and D(JB
r )= H .

Lemma 2.3 (see, [37]) Let {ak} be a sequence of nonnegative real numbers
satisfying the following condition ak+1 ≤ (1−bk)ak+bkck+dk, where {bk}, {ck}
and {dk} are sequences of real numbers such that

(i) bk ∈ [0, 1] and
∑∞

k=1 bk = ∞;
(ii) lim supk→∞ ck ≤ 0;
(iii)

∑∞
k=1 dk < ∞.

Then, limk→∞ak = 0.

Lemma 2.4 (see, [3]) Let H be a real Hilbert space, let B be a maximal mono-
tone operator and let A be an α-inverse strongly monotone one in H with α > 0
such that Γ �= ∅. Then, for any p ∈ Γ, z ∈ D(A) and r ∈ (0, α), we have

‖Trz − p‖2 ≤ ‖z − p‖2 − ‖Trz − z‖2/2,

where Tr = JB
r (I − rA).

Proposition 2.1 (see, [5, 6]) Let H be a real Hilbert space, let F be as in
Lemma 2.2 and let T be a nonexpansive operator on H such that F ix(T ) �= ∅.
Then, for any bounded sequence {zk} in H such that limk→∞ ‖Tzk − zk‖ = 0,
we have

lim sup
k→∞

〈Fp∗, p∗ − zk〉 ≤ 0, (2.1)

where p∗ is the unique solution of (1.15) with Γ replaced by F ix(T ).
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3. Main Results

First, we prove the following result.

Theorem 3.1 Let H, B and A be as in Lemma 2.4 with D(A) = H and let
F be an η-strongly monotone and γ̃-strictly pseudocontractive operator on H
such that η + γ̃ > 1. Then, as k → ∞, the sequence {zk}, defined by

zk+1 = TkTc(I − tkF )zk (3.1)

with conditions (r) and (t), converges strongly to p∗, solving (1.15) with Γ =
(A + B)−10.

Proof. First, we prove that {zk} is bounded. We know that p ∈ Γ if and only
if p ∈ F ix(Tr), that is defined in Lemma 2.4 for any r ∈ (0, α). It means
that Γ = F ix(Tr) for any r ∈ (0, α). Thus, for any point p ∈ Γ, from the
nonexpansivity of Tk and Tc (see, [3]), condition (r), (3.1) and Lemma 2.2, we
have that

‖zk+1 − p‖ = ‖TkTc(I − tkF )zk − TkTcp‖
≤ ‖(I − tkF )zk − p‖
≤ (1 − tkτ )‖zk − p‖+ tk‖Fp‖
≤ max {‖z1 − p‖, ‖Fp‖/τ},

by mathematical induction. Therefore, {zk} is bounded. So, is the sequence
{Fzk}. Without any loss of generality, we assume that they are bounded by a
positive constant M1. Put yk = (I−tkF )zk. By using again the nonexpansivity
of Tk and Tc, Lemmas 2.4 and 2.2, we obtain the following inequalities,

‖zk+1 − p‖2 = ‖TkTcy
k − Tkp‖2 ≤ ‖Tcy

k − p‖2

≤ ‖yk − p‖2 − ‖Tcy
k − yk‖2/2

= ‖(I − tkF )zk − p‖2 − ‖Tcy
k − yk‖2/2

≤ (1 − tkτ )‖zk − p‖2 + 2tk〈Fp, p− zk + tkFzk〉 − ‖Tcy
k − yk‖2/2

≤ ‖zk − p‖2 + 2tk‖Fp‖(‖p‖+ 2M1) − ‖Tcy
k − yk‖2/2.

Thus,

(‖Tcy
k − yk‖2/2) − 2tk‖Fp‖(‖p‖+ 2M1) ≤ ‖zk − p‖2 − ‖zk+1 − p‖2. (3.2)

Only two cases need to be discussed. When (‖Tcy
k −yk‖2/2) ≤ 2tk‖Fp‖(‖p‖+

2M1) for all k ≥ 1, from condition (t), it follows that

lim
k→∞

‖Tcy
k − yk‖2 = 0. (3.3)
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When (‖Tcy
k − yk‖2/2) > tk‖Fp‖(‖p‖ + 2M1), considering analogue of (3.2)

from k = 1 to M , summing them side-by-side, we get that

M∑
k=1

[
(‖Tcy

k−yk‖2/2)−2tk‖Fp‖(‖p‖+2M1)
]≤ ‖z1−p‖2−‖zM+1−p‖2 ≤ ‖z1−p‖2.

Then,
∞∑

k=1

[
(‖Tcy

k − yk‖2/2) − 2tk‖Fp‖(‖p‖+ 2M1)
]
< +∞.

Consequently,

lim
k→∞

[
(‖Tcy

k − yk‖2/2) − 2tk‖Fp‖(‖p‖+ 2M1)
]
= 0,

that together with condition (t) implies (3.3). Next, from the definition of
yk, we have that ‖yk − zk‖ = tk‖Fzk‖ ≤ tkM1 → 0 as k → ∞. Thus,
limk→∞ ‖Tcz

k − zk‖ = 0. Consequently, {zk} satisfies (2.1) with T = Tc.
Now, we estimate the value ‖zk+1 − p∗‖2 as follows.

‖zk+1 − p∗‖2 = ‖TkTc(I − tkF )zk − TkTcp∗‖2

≤ ‖(I − tkF )zk − p∗‖2

≤ (1 − tkτ )‖zk − p∗‖2 + 2tk〈Fp∗, p∗ − zk + tkFzk〉
= (1 − bk)‖xk − p∗‖2 + bkck,

(3.4)

where bk = tkτ and

ck = (2/τ )
[〈Fp∗, p∗ − zk〉 + tk〈Fp∗, F zk〉].

Since
∑∞

k=1 tk = ∞,
∑∞

k=1 bk = ∞. So, from (3.4), (2.1), the condition (t) and
Lemma 2.3, it follows that limk→∞ ‖zk − p∗‖2 = 0. This completes the proof.
�

Remarks 1

1.1. Since yk = (I − tkF )zk, from (3.1) with re-denoting tk := tk+1, we get the
method

yk+1 = (I − tkF )TkTcy
k . (3.5)

Moreover, if tk → 0 then {zk} is convergent if and only if {yk} is so and their
limits coincide. Indeed, from the definition of yk, it follows that ‖yk − zk‖ ≤
tk‖Fzk‖. Therefore, when {zk} is convergent, {zk} is bounded, and hence,
{Fzk} is also bounded. Since tk → 0 as k → ∞, from the last inequality and
the convergence of {zk} it follows the convergence of {yk} and that their limits
coincide. The case, when {yk} converges, is similar.
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It is well known (see, [6]) that the operator F = I−f , where f = aI+(1−a)u
for a fixed number a ∈ (0, 1) and a fixed point u ∈ H , is η-strongly monotone
with η = 1 − a and γ̃-strictly pseudocontractive with a fixed γ̃ ∈ (a, 1), and
hence, η + γ̃ > 1. Replacing F in (3.1) and (3.5) by I − f and denoting
t′k := (1 − a)tk, we get, respectively, the following methods,

zk+1 = TkTc(t′ku + (1 − t′k)zk),

yk+1 = t′ku + (1 − t′k)TkTcy
k .

(3.6)

Then, from Theorem 3.1, we obtain that the sequences {zk} and {yk}, defined
by (3.6), as k → ∞, under conditions (t) and (r), converge strongly to a point
p∗ in Γ, solving the variational inequality 〈p∗ −u, p∗− p〉 ≤ 0 for all p ∈ Γ, i.e.,
p∗ = PΓu. Beside, we have still that

‖xk+1 − zk+1‖ = ‖TkTc(I − tkF )xk + ek) − TkTc(I − tkF )zk‖
≤ (1 − tkτ )‖xk − zk‖ + ‖ek‖,

where xk and zk are defined, respectively, by (1.13) and (3.1). Thus, by Lemma
2.3, under conditions (t), (r) and (e), ‖xk −zk‖ → 0 as k → ∞, and hence, the
sequence {xk} converges strongly to the point p∗. By the same argument as
the above, we obtain that the sequence {xk} defined by either (1.9) or (1.10),
under conditions (t), (r) and (e), converges strongly to the point p∗ = PΓu, as
k → ∞.
1.2. Now, we consider the case, when A maps a closed and convex subset C of
H into H and D(B) ⊆ C. Then, algorithms in (3.6) work well when u and x1

are chosen such that u, x1 ∈ C.
1.3. tk = 1/ ln(1 + k) does not satisfy conditions in (r′). But, it can be used in
our methods.

Further, we have the following result.
Theorem 3.2 Let H, B, A, Γ and F be as in Theorem 3.1. Then, as k → ∞,
the sequence {xk}, generated by (1.14) with conditions (β), (t), (r) and (e),
converges strongly to p∗, solving (1.15).

Proof. Obviously, for {zk}, generated by

zk+1 = βk(I − tkF )Tcz
k + (1 − βk)Tkzk, (3.7)

from (1.14), we get that

‖xk+1 − zk+1‖ = ‖[βk(I − tkF )Tcx
k − (I − tkF )Tcz

k
]
+(1 − βk)(Tkxk − Tkzk) + ek‖

≤ βk(1 − tkτ )‖xk − zk‖ + (1 − βk)‖xk − zk‖ + ‖ek‖
= (1 − βktkτ )‖xk − zk‖ + ‖ek‖.
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By Lemma 2.3 with condition (t), (β) and (e), ‖xk −zk‖ → 0 as k → ∞. So, it
is sufficient to prove that {zk}, defined by (3.7), converges to the point p∗. For
this purpose, first, we prove that {zk} is bounded. Since Tkp = p for any point
p ∈ Γ, from the nonexpansivity of Tk, (3.7) and Lemma 2.2, we have that

‖zk+1 − p‖ = ‖βk((I − tkF )Tcz
k − p) + (1 − βk)(Tkzk − p)‖

≤ βk‖(I − tkF )Tcz
k − p‖ + (1 − βk)‖Tkzk − p‖

≤ (1 − βktkτ )‖zk − p‖ + βktk‖Fp‖
≤ max {‖z1 − p‖, ‖Fp‖/τ},

by mathematical induction. Therefore, {zk} is bounded. So, are the sequences
{Tcz

k} and {FTcz
k}. Without any loss of generality, we assume that they are

bounded by a positive constant M2. By using Lemmas 2.4 and 2.2, we obtain
the following inequalities,

‖zk+1 − p‖2 ≤ βk‖(I − tkF )Tcz
k − p‖2 + (1 − βk)‖Tkzk − p‖2

≤ βk

[
(1 − tkτ )‖Tcz

k − p‖2 + 2tk〈Fp, p− Tcz
k + tkFTcz

k〉]
+ (1 − βk)‖zk − p‖2

≤ (1 − βktkτ )‖zk − p‖2 + 2βktk〈Fp, p− Tcz
k + tkFTcz

k〉
− c2‖Tcz

k − zk‖2/2

≤ ‖zk − p‖2 + 2βktk‖Fp‖(‖p‖+ 2M1) − c2‖Tcz
k − zk‖2/2,

(3.8)
where c2 is a positive constant such that c2 ≤ βk(1 − tkτ ) for all k ≥ 1. The
existence of the constant is due to conditions (β) and (t). Thus, as in the proof
of Theorem 3.1, we can obtain (3.3) with yk = zk. So, {zk} satisfies (2.1) with
T = Tc.

Now, from (3.8), we estimate the value ‖zk+1 − p∗‖2 as follows.

‖zk+1 − p∗‖2 = ‖TkTc(I − tkF )zk − T kTcp∗‖2

≤ ‖(I − tkF )zk − p∗‖2

≤ (1 − tkτ )‖zk − p∗‖2 + 2tk〈Fp∗, p∗ − Tcz
k + tkFTcz

k〉
= (1 − bk)‖zk − p∗‖2 + bkck,

(3.9)

where bk = βktkτ and

ck = (2/τ )
[〈Fp∗, p∗ − zk〉 + 〈Fp∗, zk − Tcz

k〉 + tk〈Fp∗, FTcz
k〉].

Since
∑∞

k=1 tk = ∞,
∑∞

k=1 bk = ∞. So, from (3.3) with yk = zk, (3.9) and
Lemma 2.3, it follows that limk→∞ ‖zk − p∗‖2 = 0. The proof is completed. �
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Remarks 2

2.1. Replacing F in (1.14) by I − f , that is defined in remark 1.1, we obtain
method (1.11) with t′k = βktk(1 − a), β′

k = βk − t′k and γ′
k = 1 − βk.

2.2. Let ã > 1 and let f be an ã-inverse strongly monotone operator on H .
It is easily seen that f is a contraction with constant 1/ã ∈ (0, 1), and hence,
F := I − f is an η-strongly monotone operator with η = 1 − (1/ã). Moreover,

〈Fx− Fy, x− y〉 = ‖x − y‖2 − 〈f(x) − f(y), j(x − y)〉
≤ ‖x − y‖2 − ã‖f(x) − f(y)‖2

≤ ‖x − y‖2 − γ‖(I − F )x − (I − F )y‖2,

for any γ ∈ (0, ã]. Taking any fixed γ ∈ ((1/ã), ã], we get that F is a γ–strictly
pseudocontractive operator with η + γ > 1. Next, by replacing F by I − f in
(1.14), we obtain method (1.12) with the same t′k, β′

k and γ′
k.

2.3. Further, take f = aI with a fixed number a ∈ (0, 1). Then,

〈f(x) − f(y), j(x − y)〉 = a‖x − y‖2 = (1/a)‖f(x) − f(y)‖2 ,

and hence, f is ã-inverse strongly monotone operator on H with ã = (1/a) > 1.
By the similar argument, we get a new method,

xk+1 = βk(1 − t′k)Tcx
k + (1 − βk)Tkxk + ek.

2.4. For a given α-inverse strongly monotone operator f on H , we can obtain
an α̃-inverse strongly monotone operator f̃ with α̃ > 1 by considering f̃ := βf
with a positive real number β < α. Indeed,

〈f̃(x) − f̃(y), x − y〉 = 〈βf(x) − βf(y), x − y〉
≥ βα‖f(x) − f(y)‖2 = α̃‖f̃(x) − f̃(y)‖2,

where α̃ = α/β > 1.

4. Numerical experiments

We can apply our methods to the following variational inequality problem:
find a point

p ∈ C such that 〈Ap, p− x〉 ≤ 0 for all x ∈ C, (4.1)

where C is a closed convex subset in a Hilbert space H and A is an α-inverse
strongly monotone operator on H . We know that p is a solution of (4.1) if and
only if it is a zero for inclusion (1.1), where B is the normal cone to C, defined
by

NCx = {w ∈ H : 〈w, v − x〉 ≤ 0, ∀v ∈ C}.
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Let ϕ be a proper lower semicontinuous convex function of H into (−∞,∞].
Then, the subdifferential ∂ϕ of ϕ is defined as follows:

∂ϕ(x) = {z ∈ H : ϕ(x) + 〈z, y − x〉 ≤ ϕ(y), y ∈ H}
for all x ∈ H ; see, for instance, [11]. We know that ∂ϕ is maximal monotone.
Let χC be the indicator function of C, i.e.,

χC =

{
0, x ∈ C,

∞, x /∈ C.

Then, χC is a proper semicontinuous convex function of H into (−∞,∞] and
then the subdifferential ∂χC is a maximal monotone operator. Next, we can
define the resolvent J∂χC

rk
for rk > 0, i.e., J∂χC

rk
y = (I + rk∂χC)−1y, for all

y ∈ H . We have (see, [30]) that x = J∂χC
rk

y ⇐⇒ x = PCy for any y ∈ H and
x ∈ C.

For computation, we consider the example in [8], when

C = {x ∈ E
n :

n∑
j=1

(xj − aj)2 ≤ r2}, (4.2)

where aj, r ∈ (−∞; +∞), for all 1 ≤ j ≤ n.
Numerical computations are implemented with n = 3, a1 = a2 = a3 = 2,

r = 1 and Ax = ϕ′(x) where ϕ(x) = [(x1−1.5)2 +(x2 −1.3)2]/2 for all x ∈ E
3.

Clearly, A is an 1-inverse strongly monotone operator on Euclidean space E
3.

With taking u = (2.0; 1.0; 1.5), we get that p∗ = PΓu = (1.5; 1.3; 1.5) is a
solution of (4.1)-(4.2) where Γ = {(1.5; 1.3; (−∞,∞))}∩ C is the solution set
of the stated problem. The computational results, using each method from
(1.9), (1.11) and (1.12) with a starting point x1 = (2.7; 2.5; 2.3), t′k = 1/(k+1),
γ′

k = 0.1 + 1/(k + 1), β′
k = 1 − t′k − γ′

k, c = 0.5, rk = 1/(k + 1) and either
ek = 0 or ek = (1.0; 1.0; 1.0)/k2, are presented in numerical tables 1-6. Note
that, using f = 0.9I in method (1.14), we have p∗ is the point in Γ with
minimal norm, where p∗ = (1.5; 1.3; 2−√

0.74) ≈ (1.5; 1.3; 1.13397674733). We
do not calculate by method (1.10), because it is equivalent to (1.9). Analyzing
the numerical results, we can conclude that the calculation by methods (1.9)
and (1.11) is better than that by (1.12). Moreover, the calculation without
errors, i.e., ek = (0; 0; 0) for all k ≥ 1, is also better than that with errors
ek = (1; 1; 1)/k2. The numerical results above show that our methods work
good and they are simpler than that in [8].

Further, for comparison, we give numerical results by methods (1.5) and
(1.10) with the same t′k and rk = 0.1+1/(3k), satisfying conditions (r′) and (r),
where c = 0.4 and ek = (0; 0; 0) in the tables 7 and 8, respectively. Numerical
results computed by (1.10) and (1.8) with new rk = 1/(k(k + 1)), that has



24 Modified forward-backward splitting methods in Hilbert spaces

Table 1: Computational results by (1.9) with ek = (0; 0; 0).

k xk+1
1 xk+1

2 xk+1
3

10 1.5372038029 1.2776932141 1.7272727273
20 1.5215419538 1.2870748319 1.5380952381
30 1.5150884495 1.2909469303 1.5258064516
40 1.5116002380 1.2930398572 1.5195212195
50 1.5094194541 1.2943483276 1.5156862745
100 1.5048024654 1.2970885207 1.5079207921
200 1.5024628903 1.2985223138 1.5039800995
300 1.5016500922 1.2990999447 1.5039867110
400 1.5012406639 1.2991556016 1.5019950125
500 1.5009404019 1.2994035880 1.5015968064

properties (r) and (r̃), are given in tables 9 and 10, respectively. Tables of
numerical results 7, 8, 9 and 10 show that method (1.8) gives the best result
than the others. Perhaps, the quantity of information (Ti, i = 1, 2, · · · , k),
using at kth iteration step, for method (1.8) is more than that for the rest
methods.

5. Conclusion

We have presented several iterative methods of Halpern or viscosity approxi-
mation types for finding a zero of a monotone inclusion in Hilbert spaces. We
have showed that they are particular cases of our new two methods, designed
for solving a monotone variational inequality problem over the set of zeros
for the inclusion problem. Both these two methods are two combinations of
the steepest-descent method with the forward-backward splitting one, strong
convergence results of which have been proved under a new condition on re-
solvent parameter and weaker conditions on iterative parameter than that for
other methods in literature. A numerical example was given for illustrating
our methods and the comparisons of our new methods with others in literature
have been done by computations with the same values of iterative parameters.
AcknowledgementsThis work was supported by the Vietnam National Foun-
dation for Science and Technology Development under Grant N. 101.02-2017.305.
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Table 2: Computational results by (1.9) with ek = (1; 1; 1)/k2.

k xk+1
1 xk+1

2 xk+1
3

10 1.5464178232 1.2869072344 1.9798850896
20 1.5239296975 1.2894625776 1.7854239477
30 1.5161650112 1.2920234920 1.7066898467
40 1.5122103973 1.2936500166 1.6633850488
50 1.5098111775 1.2947406484 1.6357713347
100 1.5049014855 1.2971877541 1.5754689249
200 1.5024876866 1.2985471901 1.5413829726
300 1.5016611665 1.2990210190 1.5289842863
400 1.5012468984 1.2992618361 1.5224747304
500 1.5009980120 1.2994075801 1.5184346497

Table 3: Computational results by (1.11) with ek = (0; 0; 0).

k xk+1
1 xk+1

2 xk+1
3

10 1.6109762181 1.2343058229 1.5727272727
20 1.5555754564 1.2666565954 1.5380952381
30 1.5370406269 1.2777756281 1.5258064516
40 1.5277788571 1.2833326857 1.5195121951
50 1.5222226527 1.2866664084 1.5156862745
100 1.5111111368 1.2933333179 1.5079207921
200 1.5055555571 1.2966666657 1.5039800995
300 1.5037037040 1.2977777776 1.5026078073
400 1.5027777779 1.2983333333 1.5019950125
500 1.5022222223 1.2986666667 1.5015968064
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Table 4: Computational results by (1.11) with ek = (1; 1; 1)/k2.

k xk+1
1 xk+1

2 xk+1
3

10 1.6440673591 1.2674396185 1.8810373796
20 1.6519480053 1.2730292336 1.7336465758
30 1.5397242253 1.2804592266 1.6716068529
40 1.5295244149 1.2848079776 1.6368649315
50 1.5231546812 1.2875984368 1.6144512404
100 1.5113385081 1.2935606892 1.5647033328
200 1.5056117427 1.2967228513 1.5359733964
300 1.5037285808 1.2978026543 1.5253719115
400 1.5027917447 1.2983473001 1.5197633197
500 1.5022311510 1.2986755954 1.5015968064

Table 5: Computational results by (1.12) with ek = (0; 0; 0).

k xk+1
1 xk+1

2 xk+1
3

10 1.6838845367 1.4316385735 0.9460475410
20 1.6607901923 1.4360056970 1.0249545450
30 1.6517732101 1.4357200727 1.0551478617
40 1.6470038387 1.4351359901 1.0711414366
50 1.440569072 1.4346259790 1.0810516556
100 1.6379679014 1.4332109466 1.1016324519
200 1.6348245088 1.4322892090 1.1123282170
300 1.6337619066 1.4319480339 1.1159568595
400 1.6332278173 1.4317708904 1.1177833634
500 1.6329064700 1.4316624810 1.1188832032
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Table 6: Computational results by (1.12) with ek = (1; 1; 1)/k2.

k xk+1
1 xk+1

2 xk+1
3

10 1.6997343568 1.4394420335 0.9555823001
20 1.6639790863 1.4379547688 1.0275707923
30 1.6531272890 1.4365743834 1.0563427660
40 1.6477489034 1.4356122668 1.0563427660
50 1.6445275278 1.4349289576 1.0814923391
100 1.6380825145 1.4332856541 1.1017448445
200 1.6348527888 1.4323077406 1.1123561663
300 1.6337744205 1.4319562476 1.1159695279
400 1.6332348410 1.4317755041 1.1177905026
500 1.6329109593 1.4316654313 1.1188877774

Table 7: Computational results by (1.5) with ek = (0; 0; 0).

k xk+1
1 xk+1

2 xk+1
3

100 1.5477401998 1.2713559444 1.5079207920
200 1.5244482200 1.2853310680 1.5039800995
300 1.5164230401 1.2901461759 1.5026578073
400 1.5123633874 1.2925819676 1.5019950125
500 1.5099127274 1.2940523636 1.5015968064

Table 8: Computational results by (1.10) with ek = (0; 0; 0).

k xk+1
1 xk+1

2 xk+1
3

100 1.5107147983 1.2935711210 1.5079207920
200 1.5053959438 1.2967624337 1.5039800995
300 1.5036059047 1.2978364572 1.5026578073
400 1.5027076630 1.2983754022 1.5019950125
500 1.5021676845 1.2986993893 1.5015968064

Table 9: Computational results by (1.5) with ek = (0; 0; 0).

k xk+1
1 xk+1

2 xk+1
3

100 1.5123743414 1.2925753951 1.5079207920
200 1.5062186699 1.2962687981 1.5039800995
300 1.5041527542 1.2975083475 1.5026578073
400 1.5031771776 1.2981296934 1.5019950125
500 1.5024949949 1.2985030030 1.5015968064
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Table 10: Computational results by (1.8) with ek = (0; 0; 0).

k xk+1
1 xk+1

2 xk+1
3

100 1.5070685001 1.2957589000 1.5079207920
200 1.5035443335 1.2978733999 1.5039800995
300 1.5023651487 1.2985809107 1.5026578073
400 1.5017747116 1.2989351730 1.5019950125
500 1.5014201780 1.2991478932 1.5015968064
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