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Abstract

In this paper, we propose a method for investigating the solvability
and iterative solution of coupled beams equations with fully nonlinear
terms. Differently from other authors, we reduce the problem to an
operator equation for the right-hand side functions. The advantage of the
proposed method is that it does not require any Nagumo-type conditions
for the nonlinear terms. Some examples, where exact solution of the
problem are known or not, demonstrate the effectiveness of the obtained
theoretical results.

1. Introduction

In the beginning of the 2017 Minhós and Coxe [7] for the first time considered
the fully fourth order coupled system{

u(4)(t) = f(t, u(t), u′(t), u′′(t), u′′′(t), v(t), v′(t), v′′(t), v′′′(t)),
v(4)(t) = h(t, u(t), u′(t), u′′(t), u′′′(t), v(t), v′(t), v′′(t), v′′′(t))

(1)
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with the boundary conditions{
u(0) = u′(0) = u′′(0) = u′′(1) = 0,
v(0) = v′(0) = v′′(0) = v′′(1) = 0. (2)

They gave sufficient conditions for the solvability of the system by using the
lower and upper solutions method and the Schauder fixed point theorem. The
proof of this result is very cumbersome and complicated. It requires Nagumo-
type conditions for the sum of the functions f and h. Furthermore, it contained
some errors due to the use of non-correct definition of the norm of the space
C3 × C3. The necessary corrections are made in the Corrigendum in [8].

Motivated by the above fact, in this paper we study the system (1)-(2)
by another method, namely by reducing it to an operator equation for the
pair of nonlinear terms but not for the pair of the functions to be sought
(u, v). Without any Nagumo-type conditions and under some easily verified
conditions we establish the existence and uniqueness of a solution of the system
(1)-(2). Besides, we also prove the property of sign preserving of the solution
and the convergence of an iterative method for finding the solution. Some
examples, where exact solutions of the problem are known or not, demonstrate
the effectiveness of the obtained theoretical results. The method used here is
a further development of the method proposed in our recent works [1, 2, 3, 4].

Note that some particular cases of the system (1) were studied before,
namely, in [5, 10] the authors considered the equations containing only even
order derivatives associated with the boundary conditions different from (2).
Under very complicated conditions, by using a fixed point index theorem on
cones, the authors obtained the existence of positive solutions. But it should be
emphasized that the obtained results are of pure theoretical character because
no examples of existing solutions are shown.

The paper is organized as follows. In Section 2 we consider the existence
and uniqueness of a solution of the problem (1)-(2) and its sign preservation.
In Section 3 we study an iterative method for solving the problem, where the
convergence of iterations is proved. Section 4 is devoted to some examples for
demonstrating the applicability and efficiency of our approach. Finally, Section
5 is Conclusion.

2. Existence of a solution

To investigate the problem (1)-(2), for u, v ∈ C4[0, 1] we set

ϕ(t) = f(t, u(t), u′(t), u′′(t), u′′′(t), v(t), v′(t), v′′(t), v′′′(t)),
ψ(t) = h(t, u(t), u′(t), u′′(t), u′′′(t), v(t), v′(t), v′′(t), v′′′(t)),

w = (ϕ, ψ)T .

(3)
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Then the problem becomes{
u(4)(t) = ϕ(t), 0 < t < 1,
v(4)(t) = ψ(t), 0 < t < 1

(4)

with the boundary conditions{
u(0) = u′(0) = u′′(0) = u′′(1) = 0,
v(0) = v′(0) = v′′(0) = v′′(1) = 0. (5)

The problem {
u(4)(t) = ϕ(t), 0 < t < 1,
u(0) = u′(0) = u′′(0) = u′′(1) = 0

has a unique solution

u(t) =
∫ 1

0

G(t, s)ϕ(s)ds, (6)

where G(t, s) is the Green function

G(t, s) =

⎧⎪⎨
⎪⎩

−s
3

6
+
s2t

2
− st2

2
+
st3

6
, 0 ≤ s ≤ t ≤ 1,

st3

6
− t3

6
, 0 ≤ t ≤ s ≤ 1.

Similarly, the problem{
v(4)(t) = ψ(t), 0 < t < 1,
v(0) = v′(0) = v′′(0) = v′′(1) = 0

has a unique solution

v(t) =
∫ 1

0

G(t, s)ψ(s)ds. (7)

Therefore, the solution of the problem (1)-(2) can be represented in the form
{

u(t) =
∫ 1

0
G(t, s)ϕ(s)ds,

v(t) =
∫ 1

0
G(t, s)ψ(s)ds,

(8)

where ϕ(t), ψ(t) are defined by (3) and the pair of functions (u(t), v(t)) ∈ E
with E = C4[0, 1]× C4[0, 1]).
From (8) it follows {

u′(t) =
∫ 1

0
G1(t, s)ϕ(s)ds,

v′(t) =
∫ 1

0 G1(t, s)ψ(s)ds,
(9)
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where we denote

G1(t, s) =

⎧⎪⎨
⎪⎩

s2

2
− st+

st2

2
, 0 ≤ s ≤ t ≤ 1

st2

2
− t2

2
, 0 ≤ t ≤ s ≤ 1.

It is easy to verify that

max
0≤t≤1

∫ 1

0

|G(t, s)|ds=
1
24
, max

0≤t≤1

∫ 1

0

|G1(t, s)|ds =
1
12
, (10)

Now we set

u1(t) = u′(t), u2(t) = u′′(t), u3(t) = u′′′(t),
v1(t) = v′(t), v2(t) = v′′(t), v3(t) = v′′′(t).
U(t) = (u(t), u1(t), u2(t), u3(t)), V (t) = (v(t), v1(t), v2(t), v3(t)).

(11)

Then the problem (4)-(5) is reduced to a sequence of the problems{
u′′2(t) = ϕ(t), 0 < t < 1,
u2(0) = u2(1) = 0, (12)

{
u′′(t) = u2(t), 0 < t < 1,
u(0) = u′(0) = 0. (13)

{
v′′2 (t) = ψ(t), 0 < t < 1,
v2(0) = v2(1) = 0, (14)

{
v′′(t) = v2(t), 0 < t < 1,
v(0) = v′(0) = 0. (15)

Clearly, the solutions u2 and u of the problems (12)-(13) depend on ϕ, that
is, u2 = u2ϕ(t), u = uϕ(t). Similarly, the solutions v2 and v of the problems
(14)-(15) depend on ψ, that is, v2 = v2ψ(t), v = vψ(t). Therefore, ϕ and ψ
must satisfy equations {

ϕ = Aw,
ψ = Bw,

(16)

where A and B are nonlinear operators defined by{
(Aw)(t) = f(t, Uϕ(t), Vψ(t)),
(Bw)(t) = h(t, Uϕ(t), Vψ(t)), (17)

Uϕ, Vψ being defined by (11) with the corresponding subscripts for each com-
ponents. Then, for w we have the equation

w = Tw, (18)
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where T is defined by

Tw =
(
Aw
Bw

)
. (19)

Now, for each number M > 0 denote

DM = {(t, u, u1, u2, u3, v, v1, v2, v3)} ,
where

0 ≤ t ≤ 1, |u| ≤ M

24
, |u1| ≤ M

12
, |u2| ≤ M

8
, |u3| ≤ M

2
,

|v| ≤ M

24
, |v1| ≤ M

12
, |v2| ≤ M

8
, |v3| ≤ M

2

and by B[O,M ] we denote the closed ball centered at O with the radius M in
the space F = (C[0, 1])2, i.e.,

B[0,M ] = {w ∈ F : ‖w‖F ≤M}

with the norms
‖w‖F = max{‖ϕ‖, ‖ψ‖},

‖ϕ‖ = max
0≤t≤1

|ϕ(t)|, ‖ψ‖ = max
0≤t≤1

|ψ(t)|.

Theorem 1. Suppose that there exists a number M > 0 such that the functions
f(t, U, V ) and h(t, U, V ) are continuous and

max{|f(t, U, V )|, |h(t, U, V )|} ≤M (20)

for any (t, U, V ) ∈ DM .
Then, the problem (1)-(2) has a solution satisfying the estimates

|u(t)| ≤ M

24
, |u′(t)| ≤ M

12
, |u′′(t)| ≤ M

8
, |u′′′(t)| ≤ M

2
,

|v(t)| ≤ M

24
, |v′(t)| ≤ M

12
, |v′′(t)| ≤ M

8
, |v′′′(t)| ≤ M

2
.

for any 0 ≤ t ≤ 1.

Proof. Since the problem (4) is reduced to the operator equation (18), the
theorem will be proved if we show that this operator equation has a solution.
For this purpose, first we show that the operator T defined by (19) maps the
closed ball B[0,M ] into itself.

Let w be an element in B[O,M ]. Then, from (8)-(10) it is easy to obtain

‖u‖ ≤ 1
24

‖ϕ‖, ‖u′‖ ≤ 1
12

‖ϕ‖, ‖v‖ ≤ 1
24

‖ψ‖, ‖v′‖ ≤ 1
12

‖ψ‖. (21)
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For estimating ‖u′′‖ and ‖u′′′‖ we notice that the solutions of the problem (12),
(14) can be represented in the form{

u2(t) =
∫ 1

0
G2(t, s)ϕ(s)ds,

v2(t) =
∫ 1

0 G2(t, s)ψ(s)ds,
(22)

where G2(t, s) is the Green function

G2(t, s) =

{
−s+ st, 0 ≤ s ≤ t ≤ 1,
st − t, 0 ≤ t ≤ s ≤ 1.

It is easy to verify that

max
0≤t≤1

∫ 1

0

|G2(t, s)|ds =
1
8
. (23)

Therefore, taking into account (22) we have

‖u′′‖ = ‖u2‖ ≤ 1
8
‖ϕ‖, ‖v′′‖ = ‖v2‖ ≤ 1

8
‖ψ‖. (24)

Now, rewrite (22) in the form{
u2(t) =

∫ t
0 (−s+ st)ϕ(s)ds +

∫ 1

t (st − t)ϕ(s)ds,
v2(t) =

∫ t
0
(−s+ st)ψ(s)ds +

∫ 1

t
(st − t)ψ(s)ds.

(25)

From here we obtain{
u3(t) = u′2(t) =

∫ t
0
sϕ(s)ds +

∫ 1

t
(s− 1)ϕ(s)ds =

∫ 1

0
G3(t, s)ϕ(s)ds,

v3(t) = v′2(t) =
∫ t
0
sψ(s)ds +

∫ 1

t
(s− 1)ψ(s)ds =

∫ 1

0
G3(t, s)ψ(s)ds,

(26)

where G3(t, s) is the function continuous in the square [0, 1]2 except for the line
s = t

G3(t, s) =

{
s, 0 ≤ s < t ≤ 1,

s− 1, 0 ≤ t < s ≤ 1.

Hence,

‖u′′′‖ = ‖u3‖ ≤ M

2
‖ϕ‖, ‖v′′′‖ = ‖v3‖ ≤ M

2
‖ψ‖. (27)

Taking into account (21), (24), (27) and ‖w‖ = max{‖ϕ‖, ‖ψ‖} ≤M we have

‖u‖ ≤ M

24
, ‖u1‖ ≤ M

12
, ‖u2‖ ≤ M

8
, ‖u3‖ ≤ M

2
,

‖v‖ ≤ M

24
, ‖v1‖ ≤ M

12
, ‖v2‖ ≤ M

8
, ‖v3‖ ≤ M

2
.

(28)
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Therefore, (t, U, V ) ∈ DM for t ∈ [0, 1]. From the definition of T by (19), (17)
and the condition (20), we have Tw ∈ B[0,M ], i.e., the operator T maps the
ball B[0,M ] into itself.

Next, we prove that the operator T is a compact one in the space F .
Providing the subscript ϕ for u and ψ for v in the formulas (8), (9), (22)

and (26) we have {
uϕ(t) =

∫ 1

0
G(t, s)ϕ(s)ds,

vψ(t) =
∫ 1

0
G(t, s)ψ(s)ds,

(29)

{
u′ϕ(t) =

∫ 1

0
G1(t, s)ϕ(s)ds,

v′ψ(t) =
∫ 1

0 G1(t, s)ψ(s)ds,
(30)

{
u′′ϕ(t) =

∫ 1

0 G2(t, s)ϕ(s)ds,
v′′ψ(t) =

∫ 1

0
G2(t, s)ψ(s)ds.

(31)

{
u′′′ϕ (t) =

∫ 1

0
G3(t, s)ϕ(s)ds,

v′′′ψ (t) =
∫ 1

0
G3(t, s)ψ(s)ds.

(32)

According to [6, Sec. 31] the integral operators in (29)-(32) which put each pair
of functions (ϕ, ψ) ∈ F in correspondence to the pairs of functions
(uϕ, vψ), (u′ϕ, v

′
ψ), (u′′ϕ, v

′′
ψ), (u′′′ϕ , v

′′′
ψ ), are compact operators. Therefore, in view

of the continuity of the functions f(t, U, V ), h(t, U, V ) it is easy to deduce that
the operator T defined by (19) is compact operator in the space F . Thus, T is
a compact operator from the closed ball B[0,M ]) into itself. By the Schauder
Fixed Point Theorem [9] the operator equation (18) has a solution. The theo-
rem is proved. �

We now denote

D++
M = {(t, u, u1, u2, u3, v, v1, v2, v3)} ,

where

0 ≤ t ≤ 1, 0 ≤ u ≤ M

24
, 0 ≤ u1 ≤ M

12
, 0 ≤ u2 ≤ M

8
, |u3| ≤ M

2
,

0 ≤ v ≤ M

24
, 0 ≤ v1 ≤ M

12
, 0 ≤ v2 ≤ M

8
, |v3| ≤ M

2
,

and
S−−
M = {w ∈ F | −M ≤ ϕ(t) ≤ 0, −M ≤ ψ(t) ≤ 0} .

Similarly, we introduce the notations D−−
M , S++

M , D+−
M , S−+

M , D−+
M , S+−

M as
follows

D−−
M = {(t, u, u1, u2, u3, v, v1, v2, v3)} ,
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where

0 ≤ t ≤ 1, − M

24
≤ u ≤ 0,−M

12
≤ u1 ≤ 0, −M

8
≤ u2 ≤ 0, |u3| ≤ M

2
,

− M

24
≤ v ≤ 0,−M

12
≤ v1 ≤ 0, −M

8
≤ v2 ≤ 0, |v3| ≤ M

2
,

and
S++
M = {w ∈ F | 0 ≤ ϕ(t) ≤M, 0 ≤ ψ(t) ≤M} ;

D+−
M = {(t, u, u1, u2, u3, v, v1, v2, v3)} ,

where

0 ≤ t ≤ 1, 0 ≤ u ≤ M

24
, 0 ≤ u1 ≤ M

12
, 0 ≤ u2 ≤ M

8
, |u3| ≤ M

2
,

−M
24

≤ v ≤ 0,−M
12

≤ v1 ≤ 0, −M
8

≤ v2 ≤ 0, |v3| ≤ M

2
,

and
S−+
M = {w ∈ F | −M ≤ ϕ(t) ≤ 0, 0 ≤ ψ(t) ≤M} ;

D−+
M = {(t, u, u1, u2, u3, v, v1, v2, v3)} ,

where

0 ≤ t ≤ 1, −M
24

≤ u ≤ 0, −M
12

≤ u1 ≤ 0, −M
8

≤ u2 ≤ 0, |u3| ≤ M

2
,

0 ≤ v ≤ M

24
, 0 ≤ v1 ≤ M

12
, 0 ≤ v2 ≤ M

8
, |v3| ≤ M

2
,

and
S+−
M = {w ∈ F | 0 ≤ ϕ(t) ≤M, −M ≤ ψ(t) ≤ 0} .

Now consider some particular cases of Theorem 1.

Theorem 2. (Positivity or negativity of solution)
(i) Suppose that in D++

M the functions f, h are continuous and

−M ≤ f(t, U, V ) ≤ 0, −M ≤ h(t, U, V ) ≤ 0. (33)

Then, the problem (1)-(2) has a solution (u(t), v(t)) with the properties u(t) ≥
0, u′(t) ≥ 0, u′′(t) ≥ 0, v(t) ≥ 0, v′(t) ≥ 0, v′′(t) ≥ 0.
(ii) Suppose that in D−−

M the functions f, h are continuous and

0 ≤ f(t, U, V ) ≤M, 0 ≤ h(t, U, V ) ≤M. (34)
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Then, the problem (1)-(2) has a solution (u(t), v(t)) with the properties u(t) ≤
0, u′(t) ≤ 0, u′′(t) ≤ 0, v(t) ≤ 0, v′(t) ≤ 0, v′′(t) ≤ 0.
(iii) Suppose that in D+−

M the functions f, h are continuous and

−M ≤ f(t, U, V ) ≤ 0, 0 ≤ h(t, U, V ) ≤M. (35)

Then, the problem (1)-(2) has a solution (u(t), v(t)) with the properties u(t) ≥
0, u′(t) ≥ 0, u′′(t) ≥ 0, v(t) ≤ 0, v′(t) ≤ 0, v′′(t) ≤ 0.
(iv) Suppose that in D−+

M the functions f, h are continuous and

0 ≤ f(t, U, V ) ≤M, −M ≤ h(t, U, V ) ≤ 0. (36)

Then, the problem (1)-(2) has a solution (u(t), v(t)) with the properties u(t) ≤
0, u′(t) ≤ 0, u′′(t) ≤ 0, v(t) ≥ 0, v′(t) ≥ 0, v′′(t) ≥ 0.

Proof.
The existence of a solution (u(t), v(t)) of the problem in the case (i) is

proved in a similar way as in Theorem 1, where instead of DM and B[0,M ]
there stand D++

M and S−−
M . The sign of u(t), v(t) and their derivatives are

deduced from the representations (8), (9), (22) if taking into account the sign
of ϕ(s), ψ(s) and that G(t, s), G1(t, s), G2(t, s) are nonpositive functions.

The proof of the cases (ii), (iii) and (iv) is similar to that of (i), where instead
of the pair (D++

M , S−−
M ) there stand the pairs (D−−

M , S++
M ), (D+−

M , S−+
M ) and

(D−+
M , S+−

M ), respectively.�
Now we denote

ui1 = (ui)′, ui2 = (ui)′′, ui3 = (ui)′′′;

vi1 = (vi)′, vi2 = (vi)′′, vi3 = (vi)′′′;

U i = (ui, ui1, u
i
2, u

i
3), V i = (vi, vi1, v

i
2, v

i
3);

ϕi = f(t, U i, V i), ψi = h(t, U i, V i); (i = 1.2).

Theorem 3. (Uniqueness of solution) Suppose that there exist numbers ci, di ≥
0 (i = 0, ..., 7) such that

|f(t, U2, V 2) − f(t, U1, V 1)|
≤ c0|u2 − u1| + c1|u2

1 − u1
1|+ c2|u2

2 − u1
2|+ c3|u2

3 − u1
3|

+ c4|v2 − v1| + c5|v2
1 − v1

1 | + c6|v2
2 − v1

2 | + c7|v2
3 − v1

3 |,
(37)

|h(t, U2, V 2) − h(t, U1, V 1)|
≤ d0|u2 − u1| + d1|u2

1 − u1
1|+ d2|u2

2 − u1
2| + d3|u2

3 − u1
3|

+ d4|v2 − v1| + d5|v2
1 − v1

1 | + d6|v2
2 − v1

2 |+ d7|v2
3 − v1

3 |,
(38)
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for any (t, U, V ), (t, U i, V i) ∈ [0, 1]× R
8 (i = 1, 2), and

q := max{q1, q2} < 1 (39)

with
q1 :=

c0 + c4
24

+
c1 + c5

12
+
c2 + c6

8
+
c3 + c7

2
,

q2 :=
d0 + d4

24
+
d1 + d5

12
+
d2 + d6

8
+
d3 + d7

2
.

Then the solution of the problem (1)-(2) is unique if it exists.

Proof. Suppose the problem has two solutions (u1(t), v1(t)) and (u2(t), v2(t)).
Due to the estimates (28) we have

‖u2 − u1‖ ≤ 1
24

‖ϕ2 − ϕ1‖, ‖u2
1 − u1

1‖ ≤ 1
12

‖ϕ2 − ϕ1‖,

‖u2
2 − u1

2‖ ≤ 1
8
‖ϕ2 − ϕ1‖, ‖u2

3 − u1
3‖ ≤ 1

2
‖ϕ2 − ϕ1‖

‖v2 − v1‖ ≤ 1
24

‖ψ2 − ψ1‖, ‖v2
1 − v1

1‖ ≤ 1
12

‖ψ2 − ψ1‖,

‖v2
2 − v1

2‖ ≤ 1
8
‖ψ2 − ψ1‖, ‖v2

3 − v1
3‖ ≤ 1

2
‖ψ2 − ψ1‖.

(40)

From (37), (38) and the above estimates we have

‖w2 −w1‖ = max{‖f(t, U2, V2) − f(t, U1, V1)‖, ‖h(t, U2, V2) − h(t, U1, V1)‖}
≤ max{q1 max{‖ϕ2 − ϕ1‖, ‖ψ2 − ψ1‖}, q2 max{‖ϕ2 − ϕ1‖, ‖ψ2 − ψ1‖}}
≤ q‖w2 − w1‖

(41)
with

q1 =
c0 + c4

24
+
c1 + c5

12
+
c2 + c6

8
+
c3 + c7

2
,

q2 =
d0 + d4

24
+
d1 + d5

12
+
d2 + d6

8
+
d3 + d7

2
,

q = max{q1, q2}.
Since q < 1 the inequality (41) occurs only in the case w2 = w1. This implies
u2 = u1 and v2 = v1. Thus, the theorem is proved. �

Theorem 4. Assume that there exist numbers M, ci, di ≥ 0 (i = 0, .., 7) such
that

max{|f(t, U, V )|, |h(t, U, V )|} ≤M, (42)

|f(t, U2, V 2) − f(t, U1, V 1)|
≤ c0|u2 − u1| + c1|u2

1 − u1
1|+ c2|u2

2 − u1
2|+ c3|u2

3 − u1
3|

+ c4|v2 − v1| + c5|v2
1 − v1

1 | + c6|v2
2 − v1

2 | + c7|v2
3 − v1

3 |,
(43)



40 Existence results and iterative method for...

|h(t, U2, V 2) − h(t, U1, V 1)|
≤ d0|u2 − u1| + d1|u2

1 − u1
1|+ d2|u2

2 − u1
2| + d3|u2

3 − u1
3|

+ d4|v2 − v1| + d5|v2
1 − v1

1 | + d6|v2
2 − v1

2 |+ d7|v2
3 − v1

3 |,
(44)

for any (t, U, V ), (t, U i, V i) ∈ DM (i = 1, 2), and

q := max{q1, q2} < 1 (45)

with
q1 :=

c0 + c4
24

+
c1 + c5

12
+
c2 + c6

8
+
c3 + c7

2
,

q2 :=
d0 + d4

24
+
d1 + d5

12
+
d2 + d6

8
+
d3 + d7

2
.

Then, the problem (1)-(2) has a unique solution (u(t), v(t)) such that

|u(t)| ≤ M

24
, |u′(t)| ≤ M

12
, |u′′(t)| ≤ M

8
, |u′′′(t)| ≤ M

2
,

|v(t)| ≤ M

24
, |v′(t)| ≤ M

12
, |v′′(t)| ≤ M

8
, |v′′′(t)| ≤ M

2
.

for any 0 ≤ t ≤ 1.

Proof. Under the assumption (42), as proven in Theorem 1, the operator
T , defined by (19), maps the closed ball B[0,M ] into itself. The Lipschitz
condition (43), (44) as shown in the proof of Theorem 3, implies that T is a
contraction mapping. Thus, T is a contraction mapping from the closed ball
B[0,M ] into itself. By the contraction principle the operator T has a unique
fixed point in B[0,M ], which corresponds to a unique solution (u(t), v(t) of the
problem (1)-(2).

The estimations for u(t), v(t) and their derivatives are obtained as in The-
orem 1. Thus, the theorem is proved. �

Remark that in Theorem 3 the Lipschitz condition is required to be satisfied
in [0, 1]×R

8, while in Theorem 4, due to the condition (42) it is required only
in DM .

3. Iterative method

Consider the following iterative process:

1. Given
w0 = (ϕ0(t), ψ0(t)) ∈ B[0,M ]. (46)

2. Knowing wk = (ϕk, ψk) (k = 0, 1, ...) solve consecutively problems{
u′′2k = ϕk(t), 0 < t < 1,
u2k(0) = u2k(1) = 0, (47)
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{
u′′k = u2k(t), 0 < t < 1,
uk(0) = u′k(0) = 0, (48)

{
v′′2k = ψk(t), 0 < t < 1,
v2k(0) = v2k(1) = 0, (49)

{
v′′k = v2k(t), 0 < t < 1,
vk(0) = v′k(0) = 0. (50)

3. Update {
ϕk+1 = f(t, Uk, Vk),
ψk+1 = h(t, Uk, Vk).

(51)

Set pk =
qk

1 − q
‖w1 −w0‖F . We obtain the following result

Theorem 5. Under the assumptions of Theorem 4 the above iterative method
converges with the rate of geometric progression and there hold the estimates

‖sk − s‖F ≤ pk
24
, ‖s′k − s′‖F ≤ pk

12
,

‖s′′k − s′′‖F ≤ pk
8
, ‖s′′′k − s′′′‖F ≤ pk

2
,

(52)

where s = (u, v) is the exact solution of the problem (1)-(2).

Proof. Notice that the above iterative method is the successive iteration
method for finding the fixed point of the operator T with the initial approx-
imation (46) belonging to B[O,M ]. Therefore, it converges with the rate of
geometric progression and there is the estimate

‖wk −w‖F ≤ qk

1 − q
‖w1 −w0‖F . (53)

Combining this with the estimates of the type (40) we obtain (52), and the
theorem is proved. �

Below we illustrate the obtained theoretical results on some examples, where
the exact solution of the problem is known or unknown.

To numerically realize the iterative method we use the difference schemes
of fourth order accuracy for the problems (47)- (50) on uniform grids ωh =
{xi = ih, i = 0, 1, ..., N ; h = 1/N}. The iterations are performed until ek =
‖sk − sk−1‖ ≤ 10−16. In the tables of results of computation n is the number
of grid points, error = ‖sk − sd‖, where sd = (ud, vd) is the exact solution of
the problem (1)- (2).
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4. Examples

In this section we give some examples for demonstrating the applicability of
the obtained theoretical results. First, we consider an example for the case of
known exact solution.

Example 1. Consider the boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(4)(t) = cos
(
−sinπt

π2
− u′′(t)

)
−

(
u′′′(t)

3

)3

− v2(t) − v′(t)
5

+
sinπt
5π5

+
t2

5π4
− t

5π4

+
(
−cosπt

π6
+

t3

3π4
− t2

2π4
+

1
π6

)2

+ sinπt −
(

cosπt
3π

)3

− 1, 0 < t < 1

v(4)(t) = −u2 − u′ + cos
(

cosπt
π4

+
2t
π4

− 1
π4

− v′′
)
− v′′′(t)

3
+

(
sinπt
π4

− t

π3

)2

+
1
3

(
−sinπt

π3
+

2
π4

)
− cos πt

π2
+

cosπt
π3

− 1
π3

− 1, 0 < t < 1

u(0) = u′(0) = u′′(0) = u′′(1) = 0,
v(0) = v′(0) = v′′(0) = v′′(1) = 0.

The exact solution of the problem is⎧⎪⎨
⎪⎩

u(t) =
sin(πt)
π4

− t

π3
,

v(t) = −cos(πt)
π6

+
t3

3π4
− t2

2π4
+

1
π6
.

In this example

f(t, U, V ) = cos
(
−sinπt

π2
− u2

)
−

(u3

3

)3

− v2 − v1
5

+
sinπt
5π5

+
t2

5π4
− t

5π4

+
(
−cos πt

π6
+

t3

3π4
− t2

2π4
+

1
π6

)2

+ sinπt−
(

cos πt
3π

)3

− 1,

h(t, U, V ) = − u2 − u1 + cos
(

cos πt
π4

+
2t
π4

− 1
π4

− v2

)
− v3

3
+

(
sinπt
π4

− t

π3

)2

+
1
3

(
−sinπt

π3
+

2
π4

)
− cos πt

π2
+

cosπt
π3

− 1
π3

− 1.

It is easy to see that the function f(t, u, u1, u2, u3, v, v1, v2, v3) does not
satisfy the Nagumo-type condition with respect to the variable u3, therefore,
[7, Theorem 6] cannot guarantee the existence of a solution of the problem.
Below, using the obtained theoretical results in Section 2 we show that the
problem has a unique solution and the iterative method is very efficient for
finding the solution.
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First, choose M such that max{|f |, |h|} ≤M . We have

|f | ≤ 1 +
(
M

6

)3

+
(
M

24

)2

+
M

60
+

1
5π5

+
1

5π4
+

1
5π4

+
(

1
π6

+
1

3π4
+

1
2π4

+
1
π6

)2

+ 1 +
1

27π3
+ 1

≈
(
M

6

)3

+
(
M

24

)2

+
M

60
+ 3.006,

|h| ≤
(
M

24

)2

+
M

12
+ 1 +

M

6
+

(
1
π4

+
1
π3

)2

+
1
3

(
1
π3

+
2
π4

)
+ 1 + 1 +

1
π3

+ 1

≈
(
M

24

)2

+
M

4
+ 2.1852

This number M may be defined from the inequality

max(|f |, |h|) ≤M

Clearly, M = 4 is a suitable choice. Then in the domain D4, since

f ′u = 0, f ′u1
= 0, f ′u2

= sin
(
−sinπt

π2
− u2

)
, f ′u3

= −
(u3

3

)2

,

f ′v = −2v, f ′v1 = −1
5
, f ′v2 = 0, f ′v3 = 0,

h′u = −2u, h′u1
= −1, h′u2

= 0, h′u3
= 0,

h′v = 0, h′v1 = 0, h′v2 = sin
(

cosπt
π4

+
2t
π4

− 1
π4

− v2

)
, h′v3 = −1

3
.

we can take

c0 = c1 = 0, c2 = 1, c3 =
4
9
, c4 =

1
3
, c5 =

1
5
, c6 = c7 = 0,

d0 =
1
3
, d1 = 1, d2 = d3 = d4 = d5 = 0, d6 = 1, d7 =

1
3
.

Then q = max{(c0 + c4
24

+
c1 + c5

12
+
c2 + c6

8
+
c3 + c7

2
), (

d0 + d4

24
+
d1 + d5

12
+

d2 + d6

8
+
d3 + d7

2
)} ≈ 0.389 < 1. All the conditions of Theorem 4 are satisfied.

Hence, the problem has a unique solution, and the iterative method converges.
The convergence of the iterative method for Example 1 is given in Table 1

and Fig. 1.
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Table 1: The convergence in Example 1.
n k error
30 12 3.7122e− 08
50 12 4.8556e− 09
100 12 3.0467e− 10
500 12 4.9041e− 13
900 12 3.8684e− 14

From Table 1 we observe that the convergence of the iterative method does
not depend on the grid size.

In the next examples, the exact solution of problem (1)-(2) is not known.

Example 2. Consider the problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(4)(t) =
uv′

12
− u′u′′ +

(u′′′)3

10
+ e−v

2
, 0 < t < 1

v(4)(t) =
uv

20
+ (u′)2u′′′ +

v′

2
+ (v′′)2 +

3
2
, 0 < t < 1

u(0) = u′(0) = u′′(0) = u′′(1) = 0,
v(0) = v′(0) = v′′(0) = v′′(1) = 0.

In this example

f(t, U, V ) =
uv1
12

− u1u2 +
u3

3

10
+ e−v

2
,

h(t, U, V ) =
uv

20
+ (u1)2u3 +

v1
2

+ (v2)2 +
3
2
.

As in the previous example, obviously, that the function f does not sat-
isfy the Nagumo-type condition with respect to the variable u3, therefore, [7,
Theorem 6] cannot guarantee the existence of a solution of the problem.

Analogously as in Example 1 we can choose M = 2, and therefore, the
Lipschitz coefficients in Theorem 4 are

c0 =
1
72
, c1 =

1
4
, c2 =

1
6
, c3 =

3
10
, c4 =

1
6
, c5 =

1
144

, c6 = c7 = 0,

d0 =
1

240
, d1 =

1
3
, d2 = 0, d3 =

1
36
, d4 =

1
240

, d5 =
1
2
, d6 =

1
2
, d7 = 0.

Then, q ≈ 0.199 < 1. All the conditions of Theorem 4 are satisfied. Hence, the
problem has a unique solution (u, v), and the iterative method converges.

The numerical experiment for N = 100 shows that with the above stopping
criterion after k = 8 iterations the iterative process stops and e8 = 2.0817e−17.
The graph of the approximate solution for Example 2 is depicted in Figure 2.
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Figure 1: The graph of ek in Example 1 for n = 100.

Moreover, below we show theoretically that this solution satifies u ≤ 0, v ≤
0. Indeed, consider the domain

D−−
2 = {(t, u, u1, u2, u3, v, v1, v2, v3)}

where

0 ≤ t ≤ 1, − 1
12

≤ u ≤ 0;−1
6
≤ u1 ≤ 0, −1

4
≤ u2 ≤ 0, |u3| ≤ 1,

− 1
12

≤ v ≤ 0;−1
6
≤ v1 ≤ 0, −1

4
≤ v2 ≤ 0, |v3| ≤ 1, ,

and the strip S++
2

S++
2 =

{
w ∈ (C[0, 1])2 |0 ≤ ϕ(t) ≤ 2, 0 ≤ ψ(t) ≤ 2

}
.

Therefore, it is easy to see that in D−−
2 we have

0 ≤ f(t, U, V ) ≤ 2, 0 ≤ h(t, U, V ) ≤ 2

and all the conditions of Theorem 2 (i) are satisfied. Hence, the problem has a
unique solution (u ≤ 0, v ≤ 0).
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Figure 2: The graph of the approximate solution in Example 2.

Example 3. Consider the problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(4)(t) = −u
′′′

24
− uu′′ − e−v

2
− e−v

′

3
, 0 < t < 1

v(4)(t) = −e−u − uv′ +
(v′′′)3

12
, 0 < t < 1

u(0) = u′(0) = u′′(0) = u′′(1) = 0,
v(0) = v′(0) = v′′(0) = v′′(1) = 0.

In this example

f(t, U, V ) = −u3

24
− uu2 − e−v

2
− e−v1

3
,

h(t, U, V ) = −e−u − uv1 +
(v3)3

12
.

As in the previous example, obviously, that the function h does not sat-
isfy the Nagumo-type condition with respect to the variable v3, therefore, [7,
Theorem 6] cannot guarantee the existence of a solution of the problem.

Analogously as in Example 1 we can choose M = 2, and therefore, the
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Figure 3: The graph of the approximate solution in Example 3.

Lipschitz coefficients in Theorem 4 are

c0 =
1
4
, c1 = 0, c2 =

1
2
, c3 =

1
24
, c4 ≈ 0.5435, c5 ≈ 0.3938, c6 = c7 = 0,

d0 ≈ 1.2536, d1 = d2 = d3 = d4 = 0, d5 =
1
12
, d6 = 0, d7 =

1
4
.

Then, q ≈ 0.1842 < 1. All the conditions of Theorem 4 are satisfied. Hence,
the problem has a unique solution (u, v), and the iterative method converges.

The numerical experiment for N = 100 shows that with the above stopping
criterion after k = 8 iterations the iterative process stops and e8 = 2.0817e−17.
The graph of the approximate solution for Example 3 is depicted in Figure 3.

Moreover, below we show theoretically that this solution satifies u ≥ 0, v ≥
0. Indeed, consider the domain

D++
2 = {(t, u, u1, u2, u3, v, v1, v2, v3)}

where

0 ≤ t ≤ 1, 0 ≤ u ≤ 1
12

; 0 ≤ u1 ≤ 1
6
, 0 ≤ u2 ≤ 1

4
, |u3| ≤ 1,

0 ≤ v ≤ 1
12
, 0 ≤ v1 ≤ 1

6
, 0 ≤ v2 ≤ 1

4
, |v3| ≤ 1,
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and the strip S−−
2

S−−
2 =

{
w ∈ (C[0, 1])2 | − 2 ≤ ϕ(t) ≤ 0, −2 ≤ ψ(t) ≤ 0

}
.

Therefore, it is easy to see that in D++
2 we have

−2 ≤ f(t, U, V ) ≤ 0, −2 ≤ h(t, U, V ) ≤ 0

and all the conditions of Theorem 2 (i) are satisfied. Hence, the problem has a
unique solution (u ≥ 0, v ≥ 0).

Example 4. Consider the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(4)(t) = −uv − e−u/2 − |v′′′|1/2, 0 < t < 1

v(4)(t) = −u′3v′ − v′′ −
(
u′′′

12

)3

− 1, 0 < t < 1

u(0) = u′(0) = u′′(0) = u′′(1) = 0,
v(0) = v′(0) = v′′(0) = v′′(1) = 0.

In this example

f(t, U, V ) = −uv − e−u/2 − |v3|1/2,
h(t, U, V ) = −u3

1v1 − v2 −
(u3

12

)3

− 1,

As in the previous example, obviously, that the function h does not satisfy
the Nagumo-type condition with respect to the variable u3. Therefore, [7,
Theorem 6] cannot guarantee the existence of a solution of the problem if this
theorem is valid.

Analogously as in Example 1 we can chooseM = 3 such that max{|f |, |h|} ≤
M . In this example, the function f does not satisfy the Lipshitz condition, but
in D3 all the conditions of Theorem 1 are satisfied. Hence, the problem has a
solution.

The numerical experiment for N = 100 shows that with the above stopping
criterion after k = 16 iterations the iterative process stops and e16 = 6.2450e−
17. The graph of the approximate solution for Example 4 is depicted in Figure
4.

Moreover, below we show theoretically that this solution satifies u ≥ 0, v ≥
0. Indeed, consider the domain

D++
3 = {(t, u, u1, u2, u3, v, v1, v2, v3)}

where

0 ≤ t ≤ 1, 0 ≤ u ≤ 1
8
; 0 ≤ u1 ≤ 1

4
, 0 ≤ u2 ≤ 3

8
, |u3| ≤ 3

2
,

0 ≤ v ≤ 1
8
, 0 ≤ v1 ≤ 1

4
, 0 ≤ v2 ≤ 3

8
, |v3| ≤ 3

2
,
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Figure 4: The graph of a approximate solution in Example 4.

and the strip S−−
3

S−−
3 =

{
w ∈ (C[0, 1])2 | − 3 ≤ ϕ(t) ≤ 0, −3 ≤ ψ(t) ≤ 0

}
.

It is easy to see that in D++
3 we have

−3 ≤ f(t, U, V ) ≤ 0, −3 ≤ h(t, U, V ) ≤ 0

and all the conditions of Theorem 2 (i) are satisfied. Hence, the problem has a
solution (u ≥ 0, v ≥ 0).

Example 5. Consider the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(4)(t) = u(t)v(t) + u′(t)3v′(t) + (u′′(t))1/3 + v′′(t)

+u′′′(t) + (v′′′(t))1/3, 0 < t < 1

v(4)(t) = u(t)2v(t) + u′(t)v′(t)2 + eu
′′(t) sin(v′′(t))

+
1
4
(u′′′(t))1/5 + v′′′(t) + 1, 0 < t < 1

u(0) = u′(0) = u′′(0) = u′′(1) = 0,
v(0) = v′(0) = v′′(0) = v′′(1) = 0.
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In this example

f(t, U, V ) = uv + u3
1v1 + u

1/3
2 + v2 + u3 + v

1/3
3 ,

h(t, U, V ) = u2v + u1v
2
1 + eu2 sin(v2) +

1
4
(u3)1/5 + v3 + 1,

Analogously as in Example 1 we can chooseM = 8 such that max{|f |, |h|} ≤
M . In D8 all the conditions of Theorem 1 are satisfied. Hence, the problem
has a solution.

Remark 1. In Example 4, the problem has a sulution. Since the function
f does not satisfy the Lipshitz condition, Theorem 3 cannot guarantee the
uniqueness of a solution. In spite of that the convergence of the iterative
method to a solution is confirmed by the numerical experiment.

Remark 2. In Examples 1-4, the right-hand side functions do not satisfy
the Nagumo-type condition, therefore, [7, Theorem 6] cannot guarantee the
existence of a solution. But as seen above, using the theory in Sections 2
and 3 we have established the existence and uniqueness (or the existence) of a
solution and the convergence of the iterative method. This convergence is also
confirmed by numerical experiments.

5. Conclusion

In this paper we have proposed a method for investigating the solvability and
iterative solution of coupled beams equations with fully nonlinear terms. In
this method, by the reduction of the problem to an operator equation for the
right-hand side functions, we have established the existence and uniqueness of
a solution and the convergence of an iterative process. We have also studied
the sign of the solution. The proposed method differs from the methods of
other authors, where the problem is reduced to an operator equation for the
pair of functions to be sought or is studied by the method of lower and upper
solutions.

The proposed approach can be used for some other systems of nonlinear
boundary value problems for ordinary and partial differential equations. This
is the direction of our future research.
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