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Abstract

An arithmetical function f is a rational arithmetical function of order
(r, s) if it can be written as the Dirichlet convolution of r completely mul-
tiplicative functions and s inverses of completely multiplicative functions.
In this paper we show that pseudo-unitarily semimultiplicative functions
and a related generalization of the unitary analog of Euler’s totient
function are rational arithmetical functions of orders (1, 2) and (2, 3).
These functions arise from the theory the so-called pseudo-LCUM and
GCUD reciprocal pseudo-LCUM matrices, where GCUD and pseudo-
LCUM stand for the greatest common unitary divisor and an extension
of the least common unitary multiple.

1 Introduction

An arithmetical function f is said to be multiplicative if f(1) = 1 and f(mn) =
f(m)f(n) for all m, n ∈ Z+ with (m, n) = 1. A multiplicative function is totally
determined by its values at prime powers. A multiplicative function f is said
to be completely multiplicative if f(mn) = f(m)f(n) for all m, n ∈ Z+. A
completely multiplicative function is totally determined by its values at primes.
In fact, a multiplicative function f is completely multiplicative if and only if
f(pk) = f(p)k for all primes p and integers k ≥ 2.
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The Dirichlet convolution of arithmetical functions f and g is defined as

(f � g)(n) =
∑

d|n
f(d)g(n/d).

The function δ, defined as δ(1) = 1 and δ(n) = 0 otherwise, serves as the
identity under the Dirichlet convolution. The Dirichlet inverse of f exists if
and only if f(1) �= 0 and it is denoted as f−1.

An arithmetical function f is said to be a rational arithmetical function of
order (r, s) if

f = g1 � g2 � · · · � gr � h−1
1 � h−1

2 � · · · � h−1
s , (1.1)

where g1, g2, . . . , gr, h1, h2, . . . , hs are completely multiplicative functions. This
notion originates from Vaidyanathaswamy [33]. For further papers on rational
arithmetical functions we refer to [3, 5, 7, 8, 12, 18, 19, 20, 25]. General material
on arithmetical functions can be found from the books [2, 22, 26, 29, 30].

Rational arithmetical functions of order (1, 1) are called totients. Euler’s
φ-function is a typical example of a totient. Rational arithmetical functions of
order (2, 0) are said to be quadratics or specially multiplicative functions. The
divisor-number ja divisor-sum functions τ and σ belong to this class. Com-
pletely multiplicative functions are rational arithmetical functions of order
(1, 0). For example, Liouville’s function λ is completely multiplicative. The
Möbius function μ is an example of a rational arithmetical function of order
(0, 1), and Pillai’s function [9, 32] is an example of a rational arithmetical func-
tion of order (2, 1). If f is a rational arithmetical function of order (r, s), then
f is a rational arithmetical function of order (t, u) for all t ≥ r and u ≥ s, since
the identity function δ is completely multiplicative. Each rational arithmetical
function is multiplicative.

The purpose of this paper is to show that certain arithmetical functions asso-
ciated with the so-called pseudo-LCUM and GCUD reciprocal pseudo-LCUM
matrices are rational arithmetical functions of orders (1, 2) and (2, 3). Here
GCUD refers to the greatest common unitary divisor of two positive integers
and pseudo-LCUM refers to an extension of the least common unitary multiple
(LCUM) of two positive integers. The arithmetical functions studied here are
pseudo-unitarily semimultiplicative functions (being an analog of semimulti-
plicative functions), completely multiplicative functions and a generalization
of the unitary analog of Euler’s totient function φ. We also study strongly
multiplicative functions, which are also related with certain GCUD reciprocal
LCUM type matrices and appear to be totients, that is, rational arithmetical
functions of order (1, 1).

The paper is organized as follows. In Section 2.1 we discuss unitary divisors
as well as GCUD and pseudo-LCUM. In Section 2.2 we consider semimultiplica-
tive functions. The pseudo-LCUM and the GCUD reciprocal pseudo-LCUM
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matrices are introduced in Section 2.3, and the Bell series of a multiplicative
function is introduced in Section 2.4. Properties of pseudo-unitarily semimulti-
plicative functions are presented in Section 3, and properties of our generaliza-
tion of the unitary analog of Euler’s totient function are presented in Section
4. Some results on strongly multiplicative functions are given in Section 5.

2 Preliminaries

2.1 Unitary divisors

A divisor d ∈ Z+ of n ∈ Z+ is said to be a unitary divisor of n and is denoted
by d ‖ n if (d, n/d) = 1. For example, the unitary divisors of 72 (= 2332)
are 1, 8, 9, 72. If d ‖ n, we also say that n is a unitary multiple of d. The
greatest common unitary divisor (GCUD) of m and n exists for all m, n ∈ Z+

but, unfortunately, the least common unitary multiple (LCUM) of m and n
does not always exist. For example, the LCUM of 2 and 4 does not exist. The
GCUD of m and n is denoted by (m, n)∗∗ and the LCUM is denoted by [m, n]∗∗

when it exists.
Hansen and Swanson [6] overcame the difficulty of the nonexistence of the

LCUM by defining
[m, n]∗∗ =

mn

(m, n)∗∗
. (2.1)

It is easy to see that mn/(m, n)∗∗ exists for all m, n ∈ Z+ and is equal to the
usual LCUM of m and n when the usual LCUM exists. Therefore [m, n]∗∗ in
(2.1) is well-defined. For example, [2, 4]∗∗ = 8 but it is not reasonable to say
that 8 is the LCUM of 2 and 4. We say that [m, n]∗∗ in (2.1) is the pseudo-
LCUM of m and n. If the LCUM exists, then it is equal to the pseudo-LCUM.
There exist also extensions of the LCUM other than the pseudo-LCUM in
the literature [11]. Note that there is some inconsistency in the notations of
GCUD and (pseudo-)LCUM in the literature. It might look natural to denote
the GCUD as (m, n)∗ but (m, n)∗ usually stands for the semi-unitary greatest
common divisor [13].

The unitary convolution of arithmetical functions f and g is defined as

(f ⊕ g)(n) =
∑

d|n
f(d)g(n/d).

The function δ also serves as the identity under the unitary convolution. The
unitary analog of the Möbius function is the inverse of the constant function 1
under the unitary convolution and it is denoted by μ∗. The function μ∗ is the
multiplicative function such that μ∗(pk) = −1 for all prime powers pk (k ≥ 1).

The concept of a unitary divisor and the unitary convolution originates from
Vaidyanathaswamy [33] and was further developed notably by Cohen [4].



Pentti Haukkanen 67

2.2 Semimultiplicative functions

An arithmetical function f is said to be semimultiplicative [10, 30] if

f((m, n))f([m, n]) = f(m)f(n) (2.2)

for all m, n ∈ Z+. An arithmetical function f is said to be quasimultiplicative
if f(1) �= 0 and

f(1)f(mn) = f(m)f(n) (2.3)

for all m, n ∈ Z+ with (m, n) = 1. Quasimultiplicative functions f may also
be characterized as semimultiplicative functions with f(1) �= 0, see (2.2). A
quasimultiplicative function f is multiplicative if and only if f(1) = 1. An
arithmetical function f with f(1) �= 0 is quasimultiplicative if and only if
f/f(1) is multiplicative. The concept of a semimultiplicative function is due
to Rearick [24] and Selberg [28].

An arithmetical function f is pseudo-unitarily semimultiplicative if

f((m, n)∗∗)f([m, n]∗∗) = f(m)f(n) (2.4)

for all m, n ∈ Z+, where “pseudo” refers to the pseudo-LCUM. This concept
was developed for the purpose of certain matrix formulas in [11]. In general,
semimultiplicative functions and their analogs are useful in the theory of the
so-called GCD type matrices, see e.g. [21].

A multiplicative function f is said to be strongly multiplicative if f(pk) =
f(p) for all prime powers pk with k ≥ 1. These functions also have connec-
tions to GCD type matrices (see [11, Theorem 4.4]) and rational arithmetical
functions.

2.3 GCD type matrices

Let S = {x1, x2, . . . , xn} be a set of distinct positive integers, and let f be an
arithmetical function. The GCD matrix on S associated with f is defined as
the n× n matrix having f evaluated at the greatest common divisor of xi and
xj as its ij entry. Various analogs and generalizations of these matrices have
been presented in the literature, see e.g. [1, 14, 15, 16, 17].

The n × n matrix having f((xi, xj)∗∗) as its ij entry is denoted as (S∗∗)f ,
and similarly the n × n matrix having f([xi, xj]∗∗) as its ij entry is denoted
as [S∗∗]f . We say that these matrices are the GCUD and the pseudo-LCUM
matrices on S with respect to f .

Now, assume that f(x) �= 0 for all x ∈ Z+. Let (S∗∗)f/[S∗∗]f denote
the n × n matrix having f((xi, xj)∗∗)/f([xi, xj]∗∗) as its ij entry, that is,
(S∗∗)f/[S∗∗]f is the Hadamard quotient of the matrices (S∗∗)f and [S∗∗]f .
The matrix (S∗∗)f/[S∗∗]f is referred to as the GCUD reciprocal pseudo-LCUM
matrix on S with respect to f in [11].
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Let
B∗

f (xi) =
∑

d‖xi

d∦xt

t<i

φ∗
f (d) (2.5)

for all i = 1, 2, . . . , n, where

φ∗
f(x) =

∑

d‖x

f(d)μ∗(x/d) = (f ⊕ μ∗)(x). (2.6)

By the unitary analog of the Möbius inversion formula [4] we have

f(x) =
∑

d‖x

φ∗
f(d).

If f(x) = x for all x, then φ∗
f = φ∗, the unitary analog of Euler’s totient

function φ, see [4, 23]. If f(x) = xk for all x, then φ∗
f = J∗

k , the unitary analog
of Jordan’s totient function Jk, see [23, 27].

If the set S is unitary divisor closed, then B∗
f (xi) = φ∗

f (xi). The function
B∗

f plays an important role in the theory of pseudo-LCUM, GCUD reciprocal
pseudo-LCUM and related matrices. In [13], it is shown, for example, that if
S is GCUD-closed and f is completely multiplicative with f(x) �= 0 for all x,
then

det [[S∗∗]f ] =
n∏

k=1

f2(xk)B∗
1/f (xk), (2.7)

where f2(x) = (f(x))2 and (1/f)(x) = 1/(f(x)) for all x. In [11], it is shown, for
example, that if S is GCUD-closed and f is pseudo-unitarily semimultiplicative,
then

det [(S∗∗)f/[S∗∗]f ] =
n∏

k=1

B∗
f2 (xk)

f2(xk)
. (2.8)

Note that the notations here are slightly different from those in [11].
In Sections 4 and 5 we analyse the properties of the function φ∗

f and show
that it is a rational arithmetical function in the case when f is a completely mul-
tiplicative function, a pseudo-unitarily semimultiplicative function or a strongly
multiplicative function.

2.4 Bell series

The Bell series of a multiplicative function f to the base p is defined as the
formal power series

fp(x) =
∞∑

n=0

f(pn)xn.
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A multiplicative function is totally determined by its Bell series. It is known
[25] that a multiplicative function f is a rational arithmetical function of order
(r, s) if and only if for each prime p, fp(x) is of the form

fp(x) =
1 + a1(p)x + a2(p)x2 + · · ·+ as(p)xs

1 + b1(p)x + b2(p)x2 + · · ·+ br(p)xr
, (2.9)

where a1(p), a2(p), . . . , as(p), b1(p), b2(p), . . . , br(p) are complex numbers. The
Bell series of a rational arithmetical function of order (r, s) given as in (1.1)
can be written as

fp(x) =
(1 − h1(p)x)(1 − h2(p)x) · · · (1 − hs(p)x)
(1 − g1(p)x)(1 − g2(p)x) · · · (1 − gr(p)x)

. (2.10)

3 Pseudo-unitarily semimultiplicative functions

In this section we examine properties of pseudo-unitarily semimultiplicative
functions defined by Equation (2.4). It is shown in [11] that if f is pseudo-
unitarily semimultiplicative and f(1) = 1, then f is multiplicative and

f(pk) = f(p)k−2f(p2) (3.1)

for all primes p and integers k ≥ 2. The converse does not hold. In fact, let f
be a multiplicative function such that for some prime p,

f(p) = 1, f(pk) = 2, k ≥ 2.

Then (3.1) holds. However,

f((p2 , p3)∗∗)f([p2, p3]∗∗) = f(1)f(p5) = 1 · 2 �= 2 · 2 = f(p2)f(p3)

and thus (2.4) does not hold, which means that f is not pseudo-unitarily semi-
multiplicative.

We next give a necessary and sufficient condition for an arithmetical func-
tion f with f(1) = 1 to be pseudo-unitarily semimultiplicative.

Theorem 3.1. An arithmetical function f is pseudo-unitarily semimultiplica-
tive with f(1) = 1 if and only if f is multiplicative and for each prime p, one
of the following conditions holds:

1) f(pk) = f(p)k for all k ≥ 1,

2) f(p) = 0 and f(pk) = 0 for all k ≥ 3,

3) f(pk) = 0 for all k ≥ 2.
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Proof. We should prove that

f((pa, pb)∗∗)f([pa, pb]∗∗) = f(pa)f(pb) (3.2)

for all b ≥ a ≥ 0 if and only if one of the conditions 1, 2, 3 holds.
Consider (3.2). If a = b ≥ 0 or a = 0, b ≥ 1, then

(pa, pb)∗∗ = pa, [pa, pb]∗∗ = pb

and thus (3.2) holds. Therefore we may confine ourselves to the case b > a > 0.
Then

(pa, pb)∗∗ = 1, [pa, pb]∗∗ = pa+b.

Therefore (3.2) reduces to

f(pa+b) = f(pa)f(pb), b > a > 0. (3.3)

For a = 1, b ≥ 2 (3.3) becomes

f(pb+1) = f(p)f(pb)

or equivalently
f(pb) = f(p)b−2f(p2). (3.4)

Let a ≥ 2, b > a. Then a + b, a, b ≥ 2 and we may apply (3.4) to obtain

f(pa+b) = f(p)a+b−2f(p2)

and
f(pa)f(pb) = f(p)a+b−4f(p2)2;

hence
f(p)a+b−2f(p2) = f(p)a+b−4f(p2)2.

Now, we have proved that (3.2) is equivalent to

f(pb) = f(p)b−2f(p2), b ≥ 2, (3.5)
f(p)a+b−2f(p2) = f(p)a+b−4f(p2)2, a ≥ 2, b > a. (3.6)

It is easy to see that (3.5) and (3.6) hold if and only one of the conditions 1,
2, 3 holds. �

From the condition 1 of Theorem 3.1 we obtain the following corollary.

Corollary 3.1. If f is a completely multiplicative function, then it is pseudo-
unitarily semimultiplicative with f(1) = 1.
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Remark 3.1. There exist pseudo-unitarily semimultiplicative functions f with
f(1) = 1 that are not completely multiplicative. For example, let f(p) = 1 and
f(pk) = 0 for all k ≥ 2 and for all primes p. Then f is pseudo-unitarily
semimultiplicative (satisfying the condition 3 of Theorem 3.1) but it is not
completely multiplicative.

Remark 3.2. Let f be a multiplicative function such that the condition 2 of
Theorem 3.1 holds for all primes p, that is, f(p) = 0 and f(pk) = 0 for all
k ≥ 3 and all primes p. Then

fp(x) = 1 + f(p2)x2,

which means that f is a rational arithmetical function of order (0, 2). In fact,
f = h−1

1 ∗ h−1
2 , where h1 and h2 are completely multiplicative functions such

that h1(p) =
√−f(p2) and h2(p) = −√−f(p2).

Remark 3.3. Let f be a multiplicative function such that the condition 3 of
Theorem 3.1 holds for all primes p, that is, f(pk) = 0 for all k ≥ 2 and all
primes p. Then

fp(x) = 1 + f(p)x,

which means that f is a rational arithmetical function of order (0, 1). In fact,
f = h−1

1 , where h1 is the completely multiplicative function with h1(p) =
−f(p).

Theorem 3.2. If f is a pseudo-unitarily semimultiplicative function with f(1) =
1, then f is a rational arithmetical function of order (1, 0) or (0, 2).

Proof. The conditions 1, 2 and 3 of Theorem 3.1 imply that the Bell series of
f is one of the following:

fp(x) =
1

1 − f(p)x
, fp(x) = 1 + f(p2)x2, fp(x) = 1 + f(p)x.

Thus f is a rational arithmetical function of order (1, 0), (0, 2) or (0, 1). Each
rational arithmetical function of order (0, 1) is also of order (0, 2). This com-
pletes the proof. �

Remark 3.4. It is shown in [11] that if f is a multiplicative function satisfying
(3.1) for all primes p and integers k ≥ 2, then f is a rational arithmetical
function of order (1, 2). The converse does not hold. For example, let f be a
multiplicative function such that for some prime p,

f(p) = f(p2) = 1, f(pk) = 0, k ≥ 3.

Then
fp(x) = 1 + x + x2,



72 Rational Arithmetical Functions Related to...

which means that f is a rational arithmetical function of order (0, 2) and there-
fore f is a rational arithmetical function of order (1, 2). However, f does not
satisfy (3.1). This function also serves as a counterexample to show that the
converse of Theorem 3.2 does not hold.

Remark 3.5. In the study of the GCUD reciprocal pseudo-LCUM matrices
we assume that f is always nonzero. It follows from Theorem 3.1 that under
this condition f is a pseudo-unitarily semimultiplicative function with f(1) = 1
if and only if f is a completely multiplicative function.

Remark 3.6. Replacing the condition f(1) = 1 with the condition f(1) �= 0
would lead to quasimultiplicative functions in Theorems 3.1 and 3.2. We do
not present the details.

4 A generalization of the unitary analog of Eu-

ler’s totient function

In this section we examine properties of the function φ∗
f defined in Equa-

tion (2.6). It should be noted that that the functions φ∗
1/f and φ∗

f2 appearing
in the matrix formulas (2.7) and (2.8) also possess the properties presented
below.

Theorem 4.1. If f is a multiplicative function satisfying (3.1) for all primes
p and integers k ≥ 2, then φ∗

f is a rational arithmetical function of order (2, 3).

Proof. Since f is multiplicative, φ∗
f is also multiplicative. Therefore, it is

enough to show that the Bell series of φ∗
f to the base p is of the form (2.9)

with r = 2 and s = 3. It is easy to see that

φ∗
f (pk) = f(pk) − 1, k ≥ 1.

Thus

(φ∗
f )p(x) = 1 +

∞∑

k=1

(f(pk) − 1)xk (4.1)

= 1 +
∞∑

k=1

f(pk)xk −
∞∑

k=1

xk.
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On the basis of (3.1) we have

(φ∗
f )p(x) = 1 + f(p)x +

∞∑

k=2

(f(p))k−2f(p2)xk − x

1 − x

= 1 + f(p)x + f(p2)x2
∞∑

k=0

(f(p))kxk − x

1 − x

= 1 + f(p)x +
f(p2)x2

1 − f(p)x
− x

1 − x
.

Thus

(φ∗
f)p(x) =

(1 − f2(p)x2)(1 − x) + f(p2)x2(1 − x) − (1 − f(p)x)x
(1 − f(p)x)(1 − x)

. (4.2)

The nominator is a polynomial of order 3, and the denominator is a polynomial
of order 2. Therefore φ∗

f is a rational arithmetical function of order (2, 3). �

Theorem 4.2. If f is a completely multiplicative function, then φ∗
f is a rational

arithmetical function of order (2, 2).

Proof. Now, f(p2) = f(p)2, and thus (4.2) reduces to

(φ∗
f)p(x) =

1 − 2x + f(p)x2

(1 − f(p)x)(1 − x)
, (4.3)

which shows that φ∗
f is a rational arithmetical function of order (2, 2). �

Theorem 4.3. If f is a pseudo-unitarily semimultiplicative function with f(1) =
1, then φ∗

f is a rational arithmetical function of order (2, 3).

Proof. If f is a pseudo-unitarily semimultiplicative function with f(1) = 1,
then it satisfies (3.1). Thus, Theorem 4.3 follows from Theorem 4.1. �

Remark 4.1. Assume that f is a pseudo-unitarily semimultiplicative function
with f(1) = 1. If f satisfies Condition 1 of Theorem 3.1, then (4.2) reduces to
(4.3). If f satisfies Condition 2 of Theorem 3.1, then (4.2) reduces to

(φ∗
f)p(x) =

(1 − x) + f(p2)x2(1 − x) − x

1 − x
.

If f satisfies Condition 3 of Theorem 3.1, then (4.2) reduces to

(φ∗
f)p(x) =

(1 − f2(p)x2)(1 − x) − (1 − f(p)x)x
(1 − f(p)x)(1 − x)

.

In each case, the nominator is a polynomial of order ≤ 3, and the denominator
is a polynomial of order ≤ 2. This also shows that if f is a pseudo-unitarily
semimultiplicative function with f(1) = 1, then φ∗

f is a rational arithmetical
function of order (2, 3).
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5 Strongly multiplicative functions

In this section we show that each strongly multiplicative function f and the
related analog φ∗

f of Euler’s totient function are rational arithmetical functions
of order (1, 1), i.e., totients.

Theorem 5.1. A strongly multiplicative function f is a rational arithmetical
function of order (1, 1) with g1(p) = 1 and h1(p) = 1 − f(p) for all primes p
given in terms of Eq. (1.1).

Proof. We have

fp(x) = 1 +
∞∑

k=1

f(p)xk = 1 +
f(p)x
1 − x

=
1 − (1 − f(p))x

1 − x
.

This proves the theorem. �

Theorem 5.2. If f is a strongly multiplicative function, then φ∗
f is a rational

arithmetical function of order (1, 1) with g1(p) = 1 and h1(p) = 2−f(p) for all
primes p given in terms of Eq. (1.1).

Proof. From (4.1) we obtain

(φ∗
f)p(x) = 1 +

∞∑

k=1

(f(p) − 1)xk = 1 +
(f(p) − 1)x

1 − x
=

1 − (2 − f(p))x
1 − x

.

This proves the theorem. �
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