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Abstract

A group divisible design GDD(v = 3+n+n, 3, 3, λ1, λ2) is an ordered
pair (V,B) where V is an (3+ n +n)-set of symbols and B is a collection
of 3-subsets (called blocks) of V satisfying the following properties: the
(3 + n + n)-set is divided into 3 groups of sizes 3, n and n; each pair of
symbols from the same group occurs in exactly λ1 blocks in B; and each
pair of symbols from different groups occurs in exactly λ2 blocks in B.
Let λ1, λ2 be positive integers. Then the spectrum of λ1, λ2, denoted by
Spec(λ1, λ2), is defined by

Spec(λ1, λ2) = {n ∈ N : a GDD(v = 3 + n + n, 3, 3, λ1, λ2) exists}.

We find the spectrum Spec(λ1, λ2) for all λ1 ≥ λ2.

1 Introduction

A pairwise balanced design is an ordered pair (S,B), denoted PBD(S,B), where
S is a finite set of symbols and B is a collection of subsets of S called blocks,
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such that each pair of distinct elements of S occurs together in exactly one
block of B. Here |S| = v is called the order of the PBD. Note that there is no
condition on the size of the blocks in B. If all blocks are of the same size k, then
we have a Steiner system S(v, k). A PBD with index λ can be defined similarly;
each pair of distinct elements occurs in λ blocks. If all blocks are same size, say
k, then we get a balanced incomplete block design BIBD(v, b, r, k, λ). In other
words, a BIBD(v, b, r, k, λ) is a set S of v elements together with a collection of
b k-subsets of S, called blocks, where each point occurs in r blocks and each
pair of distinct elements occurs in exactly λ blocks (see [5], [6], [11], [12]).

Note that in a BIBD(v, b, r, k, λ), the parameters must satisfy the necessary
conditions

1. vr = bk and

2. λ(v − 1) = r(k − 1).

With these conditions a BIBD(v, b, r, k, λ) is usually written as BIBD(v, k, λ).
A group divisible design GDD(v = v1+v2+· · ·+vg, g, k, λ1, λ2) is a collection

of k-subsets (called blocks) of a v-set of symbols, where the v-set is divided into
g groups of sizes v1, v2, . . . , vg; each pair of symbols from the same group occurs
in exactly λ1 blocks; and each pair of symbols from different groups occurs in
exactly λ2 blocks. Elements occurring together in the same group are called
first associates, and elements occurring in different groups are called second
associates. If the indices λ1 and λ2 were equal, then the design would be a
BIBD (see [4]). The existence of such GDDs has been of interest over the
years, going back to at least the work of Bose and Shimamoto in 1952 who
began classifying such designs [1]. More recently, much work has been done
on the existence of such designs when λ1 = 0 (see [3] for a summary), and the
designs here are called partially balanced incomplete block designs (PBIBDs)
of group divisible type in [3]. The existence question for k = 3 has been solved
by Sarvate, Fu and Rodger (see [5], [6]) when all groups are the same size.

In this paper, we continue to focus on blocks of size 3, solving the prob-
lem when the required designs having three groups of unequal size, namely,
we consider the problem of determining necessary conditions for an existence
of GDD(v = n1 + n2 + n3, 3, 3, λ1, λ2) and prove that the conditions are suf-
ficient for some infinite families. Since we are dealing on GDDs with three
groups and block size 3, we will use GDD(n1, n2, n3; λ1, λ2) for GDD(v =
n1 + n2 + n3, 3, 3, λ1, λ2) from now on, and we refer to the blocks as triples.
We denote (X, Y, Z;B) for a GDD(n1, n2, n3; λ1, λ2) if X, Y and Z are n1-
set, n2-set and n3-set, respectively. Chaiyasena, et al. [2] have written a
paper in this direction. In particular, they have solved the existence of a
GDD(n, 2, 1; λ1, λ2) for n ∈ {2, . . . , 6}. In [7], necessary and sufficient coditions
were found for GDD(1, 1, n; 1, λ). Moreover, Hurd and Sarvate [8] found the nec-
essary and sufficient conditions for GDD(1, 1, n; λ, 1). Recently, the existence
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of a GDD(1, 2, n; λ1, λ2) has been solved by Hurd and Sarvate [9] when n ≥ 2
and λ1 > λ2. More recenty, Lapchinda, et al. found in [10] all ordered triples
(n, λ1, λ2) of positive integers, with λ1 ≥ λ2, such that a GDD(1, n, n; λ1, λ2)
exists. We continue to investigate in this paper all triples of positive inte-
gers (n, λ1, λ2) in which a GDD(3, n, n; λ1, λ2) exists for λ1 ≥ λ2. We will see
that necessary conditions on the existence of GDD(3, n, n; λ1, λ2) can be easily
obtained by describing it graphically as follows.

Let G and H be multigraphs. A G-decomposition of H is a partition of the
edges of H such that each element of the partition induces a copy of G. We
denote G|H for a G-decomposition of H . Let λKv denote the multigraph on
v vertices in which each pair of distinct vertices is joined by λ edges. Let G1

and G2 be vertex disjoint graphs. Then G1 ∨λ G2 is the graph obtained from
the union of G1 and G2 and by joining each vertex in G1 to each vertex in G2

with λ edges. Thus the existence of a GDD(n1, n2, n3; λ1, λ2) is easily seen to
be equivalent to the existence of a K3-decomposition of λ1Kn1 ∨λ2 λ1Kn2 ∨λ2

λ1Kn3 .
The graph λ1Kn1 ∨λ2 λ1Kn2 ∨λ2 λ1Kn3 is of order n1 + n2 + n3 and size

λ1[
(
n1
2

)
+

(
n2
2

)
+

(
n3
2

)
] + λ2(n1n2 + n1n3 + n2n3). It contains n1 vertices of

degree λ1(n1 −1)+λ2(n2 +n3), n2 vertices of degree λ1(n2 −1)+λ2(n1 +n3),
and n3 vertices of degree λ1(n3 − 1) + λ2(n1 + n2). Thus the existence of a
K3-decomposition of λ1Kn1 ∨λ2 λ1Kn2 ∨λ2 λ1Kn3 implies

1. 3 | {λ1[
(
n1
2

)
+

(
n2
2

)
+

(
n3
2

)
] + λ2(n1n2 + n1n3 + n2n3)}, and

2. 2 | [λ1(n1 − 1) + λ2(n2 + n3]), 2 | [λ1(n2 − 1) + λ2(n1 + n3)], and 2 |
[λ1(n3 − 1) + λ2(n1 + n2)].

2 Preliminary Results

In this section, we will review some known results concerning triple designs
that will be used in the sequel, most of which are taken from [11]. Also we will
show some new results that are needed for proving the main theorem.

Theorem 2.1. Let v be a positive integer. Then there exists a BIBD(v, 3, 1)
if and only if v ≡ 1 or 3 (mod 6).

A BIBD(v, 3, 1) is usually called Steiner triple system and is denoted by
STS(v). Let (V,B) be an STS(v) where V is a set of v elements. Then the
number of blocks or triples is b = |B| = v(v − 1)/6.

The following results on existence of λ-fold triple systems are well known
(see, e.g., [11]).

Theorem 2.2. Let n be a positive integer. Then a BIBD(n, 3, λ) exists if
and only if λ and n are in one of the following cases:
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(a) λ ≡ 0 (mod 6) and n �= 2,

(b) λ ≡ 1 or 5 (mod 6) and n ≡ 1 or 3 (mod 6),

(c) λ ≡ 2 or 4 (mod 6) and n ≡ 0 or 1 (mod 3), and

(d) λ ≡ 3 (mod 6) and n is odd.

The following notations will be used throughout the paper for our construc-
tions.

1. Let V be a v-set. BIBD(V, 3, λ) can be defined as

BIBD(V, 3, λ) = {B : (V,B) is a BIBD(v, 3, λ)}.

2. Let X, Y and Z be three pairwise disjoint sets of cardinality n1, n2 and
n3, respectively. We define GDD(X, Y, Z; λ1, λ2) as

GDD(X, Y, Z; λ1, λ2) = {B : (X, Y, Z;B) is a GDD(n1, n2, n3; λ1, λ2)}.

3. When we say that B is a collection of subsets (blocks) of a v-set V , B
may contain repeated blocks. Thus “ ∪ ” in our context will be used for
the union of multisets.

4. Finally, if we have a set X, the cardinality of X is denoted by |X|.

3 Necessity

Let λ1, λ2 be positive integers. Then the spectrum of λ1, λ2, denoted by
Spec(λ1, λ2), is defined by

Spec(λ1, λ2) = {n ∈ N : a GDD(3, n, n; λ1, λ2) exists}.

Thus n ∈ Spec(λ1, λ2), it is necessary that n satisfy the following conditions.

3 | [λ1n(n − 1) + λ2n
2] (1)

2 | [λ1(n − 1) + λ2(n + 1)] (2)

By solving the system of congruences (1) and (2) corresponding to a given
pair of (λ1, λ2), we obtain the following necessary condition for which n ∈
Spec(λ1, λ2).

Theorem 3.1. If n ∈ Spec(λ1, λ2), then λ1, λ2 and n are related in mod 6
as in the following table.
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λ2 0 1 2 3 4 5
λ1

0 all n 3 0, 3 1, 3, 5 0, 2, 3, 5 3
1 1,3 0, 2, 3, 5 3 0, 1, 3, 4 3, 5 0, 3
2 0, 1, 3, 4 3 0, 2, 3, 5 1, 3 0,3 3, 5
3 1, 3, 5 0, 3 3 all n 3 0, 3
4 0, 1, 3, 4 3, 5 0, 3 1, 3 0, 2, 3, 5 3
5 1, 3 0, 3 3, 5 0, 1, 3, 4 3 0, 2, 3, 5

The definition of GDD(3, n, n; λ1, λ2) along with the existence of BIBD(n, 3, 6)
for all n ≥ 3 if GDD(3, n, n; λ1, λ2) exists and n ≥ 3, then for any positive in-
teger i, GDD(3, n, n; λ1 + 6i, λ2) exists. This means that λ1 can be arbitrary
large.

4 Sufficiency

We prove in this section that the necessary conditions given in Theorem 3.1
become sufficient by constructing GDD(3, n, n; λ1, λ2) correspond to (λ1, λ2)
given in the table. As we will construct GDD(3, n, n; λ1, λ2), we will use in this
section X, Y, Z for sets of sizes 3, n, n, respectively. The following observations
are useful.

1. GDD(3, n, n; λ, λ) exists if and only if BIBD(2n + 3, 3, λ) exists.

2. Spec(λ, λ) can be obtained by applying results of Theorem 2.2 and we
can characterize Spec(λ, λ) according to λ (mod 6) as

(a) Since 2n + 3 is odd, it follows that n ∈ Spec(λ, λ) for all λ ≡
0 or 3 (mod 6).

(b) If λ ≡ 1, 2, 4 or 5 (mod 6), then n ∈ Spec(λ, λ) if and only if n ≡
0 or 1 (mod 3).

3. Let 〈X, Y, Z;B〉 be a GDD(3, n, n; λ1, λ2). Then for each positive integer
i, 〈X, Y, Z; iB〉 is a GDD(3, n, n; iλ1, iλ2), where iB is the union of i copies
of B. Thus, if n ∈ Spec(λ1, λ2), then n ∈ Spec(iλ1, iλ2).

4. If n ∈ Spec(λ1, λ2) and for each pair of non-negative integers (i, j) with
i ≥ j, then n ∈ Spec(λ1 + 6i, λ2 + 6j).

5. If a BIBD(2n + 3, 3, λ1) exists and a BIBD(2n + 3, 3, λ2) exists, then a
GDD(3, n, n; λ1 + λ2, λ2) exists.

With these observations and Theorem 3.1 we have the following results.
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Theorem 4.1. Let λ1 and λ2 be positive integers such that λ1 ≥ λ2 and
λ1 ≡ λ2 (mod 6). Then, for all n ≥ 3, n ∈ Spec(λ1, λ2) if and only if λ1 ≡
0, 1, 2, 3, 4 or 5 (mod 6).

Theorem 4.1 confirms that all entries in the main diagonal of the table are
sufficient.

Theorem 4.2. Let λ1 and λ2 be positive integers such that λ1 ≥ λ2.
If n ≡ 3 (mod 6), then n ∈ Spec(λ1, λ2).

Proof. We want to show that the necessary conditions for n ≡ 3 (mod 6)
appearing in every entry of the table become sufficient.

Since n ≡ 3 (mod 6), it follows that 2n+3 ≡ 3 (mod 6) and hence BIBD(2n+
3, 3, i), BIBD(n, 3, i) and BIBD(3, 3, i) exist for all i = 1, 2, 3, 4, or 5. Thus, it
is clear that if GDD(3, n, n; λ1, λ2) exists, then GDD(3, n, n; λ1 + i, λ2 + i) and
GDD(3, n, n; λ1 + i, λ2) exist for all i = 1, 2, 3, 4, or 5.
We use

(a, b) ⇒ (a + 1, b)

if GDD(3, n, n; a, b) exists, then GDD(3, n, n; a + 1, b) exists and we use

(a, b)
⇓

(a + 1, b + 1)

if GDD(3, n, n; a, b) exists, then GDD(3, n, n; a + 1, b + 1) exists. The following
diagram shows that if n ≡ 3 (mod 6), then n ∈ Spec(λ1, λ2) for all (λ1, λ2) and
n which are related in the table.

(2, 1) ⇒ (3, 1) ⇒ (4, 1) ⇒ (5, 1) ⇒ (6, 1)
⇓ ⇓ ⇓ ⇓ ⇓

(3, 2) ⇒ (4, 2) ⇒ (5, 2) ⇒ (6, 2) ⇒ (7, 2)
⇓ ⇓ ⇓ ⇓ ⇓

(4, 3) ⇒ (5, 3) ⇒ (6, 3) ⇒ (7, 3) ⇒ (8, 3)
⇓ ⇓ ⇓ ⇓ ⇓

(5, 4) ⇒ (6, 4) ⇒ (7, 4) ⇒ (8, 4) ⇒ (9, 4)
⇓ ⇓ ⇓ ⇓ ⇓

(6, 5) ⇒ (7, 5) ⇒ (8, 5) ⇒ (9, 5) ⇒ (10, 5))
⇓ ⇓ ⇓ ⇓ ⇓

(7, 6) ⇒ (8, 6) ⇒ (9, 6) ⇒ (10, 6) ⇒ (11, 6)

�

Theorem 4.3. Let λ1 and λ2 be positive integers such that λ1 ≥ λ2.
If n ≡ 1 (mod 6), then n ∈ Spec(λ1, λ2).
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Proof. We want to show that the necessary conditions for n ≡ 1 (mod 6)
appearing in every entry of the table become sufficient.

Since n ≡ 1 (mod 6), it follows that 2n + 3 ≡ 5 (mod 6) and hence
BIBD(2n+3, 3, 3), BIBD(n, 3, 1) and BIBD(3, 3, 1) exist. Thus, it is clear that if
GDD(3, n, n; λ1, λ2) exists, then GDD(3, n, n; λ1+3, λ2+3) and GDD(3, n, n; λ1+
1, λ2) exist.
We use

(a, b) ⇒ (a + 1, b)

if GDD(3, n, n; a, b) exists, then GDD(3, n, n; a + 1, b) exists and we use

(a, b)
⇓

(a + 3, b + 3)

if GDD(3, n, n; a, b) exists, then GDD(3, n, n; a + 3, b + 3) exists. The following
diagram shows that if n ≡ 1 (mod 6), then n ∈ Spec(λ1, λ2) for all (λ1, λ2) and
n which are related in the table.

(4, 3) ⇒ (5, 3) ⇒ (6, 3) ⇒ (7, 3) ⇒ (8, 3)
⇓ ⇓ ⇓ ⇓ ⇓

(7, 6) ⇒ (8, 6) ⇒ (9, 6) ⇒ (10, 6) ⇒ (10, 6)

�

Theorem 4.4. Let λ1 and λ2 be positive integers such that λ1 ≥ λ2.
If n ≡ 5 (mod 6), then n ∈ Spec(λ1, λ2).

Proof. We want to show that the necessary conditions for n ≡ 5 (mod 6)
appearing in every entry of the table become sufficient.

Since n ≡ 5 (mod 6), it follows that 2n+3 ≡ 1 (mod 6) and hence BIBD(2n+
3, 3, 1), BIBD(2n+3, 3, 3), BIBD(n, 3, 3) and BIBD(3, 3, 3) exist. Thus, it is clear
that if GDD(3, n, n; λ1, λ2) exists, then GDD(3, n, n; λ1+1, λ2+1), GDD(3, n, n; λ1+
3, λ2 + 3) and GDD(3, n, n; λ1 + 3, λ2) exist.
We use

(a, b) ⇒ (a + 1, b + 1)

if GDD(3, n, n; a, b) exists, then GDD(3, n, n; a + 1, b + 1) exists and we use

(a, b)
⇓

(a + 3, b + 3)
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if GDD(3, n, n; a, b) exists, then GDD(3, n, n; a + 3, b + 3) exists. The following
diagram shows that if n ≡ 5 (mod 6), then n ∈ Spec(λ1, λ2) for all (λ1, λ2) and
n which are related in the table.

(4, 1) ⇒ (5, 2) ⇒ (6, 3)
⇓ ⇓ ⇓

(7, 4) ⇒ (8, 5) ⇒ (9, 6)

�

Theorem 4.5. Let λ1 and λ2 be positive integers such that λ1 ≥ λ2.
If n ≡ 0 or 4 (mod 6), then n ∈ Spec(λ1, λ2).

Proof. We want to show that the necessary conditions for n ≡ 0 or 4 (mod 6)
appearing in every entry of the table become sufficient.

Since n ≡ 0 or 4 (mod 6), it follows that 2n + 3 ≡ 3 or 5 (mod 6)
and hence BIBD(2n + 3, 3, 3), BIBD(n, 3, 2) and BIBD(3, 3, 2) exist. Thus, it
is clear that if GDD(3, n, n; λ1, λ2) exists, then GDD(3, n, n; λ1 + 3, λ2 + 3) and
GDD(3, n, n; λ1 + 2, λ2) exist.
We use

(a, b) ⇒ (a + 2, b)

if GDD(3, n, n; a, b) exists, then GDD(3, n, n; a + 2, b) exists and we use

(a, b)
⇓

(a + 3, b + 3)

if GDD(3, n, n; a, b) exists, then GDD(3, n, n; a + 3, b + 3) exists. The following
diagram shows that if n ≡ 0 or 4 (mod 6), then n ∈ Spec(λ1, λ2) for all (λ1, λ2)
and n which are related in the table.

(5, 3) ⇒ (7, 3)
⇓ ⇓

(8, 6) ⇒ (10, 6)

�

Combining results in this section we obtain the following main theorem.

Theorem 4.6. Let λ1 and λ2 be positive integers with λ1 ≥ λ2 and n be an
integer n ≥ 3 . Then n ∈ Spec(λ1, λ2) if and only if

1. 3 | [λ1n(n − 1) + λ2n
2], and

2. 2 | [λ1(n − 1) + λ2(n + 1)].
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