ON (σ, τ) -*-DERIVATION AND COMMUTATIVITY OF *-PRIME RING

Ahmad N. Alkenani † and Nazia Parveen ‡

† Department of Mathematics, Faculty of Science King Abdulaziz University P. O. Box-80219 Jeddah-21589(Saudi Arabia) e-mail: aalkenani10@hotmail.com

†Department of Mathematics College of Science and Arts Yanbu, Taibah Üniversity, Madina (Saudi Arabia) e-mail: naziamath@gmail.com

Abstract

In this paper we study the notion of (σ, τ) - \star -derivation and prove the following result: Let \mathcal{R} be a \star -prime ring with characteristic different from two and $Z(\mathcal{R})$ be the center of \mathcal{R} . If \mathcal{R} admits a non-zero (σ, τ) - \star -derivation d of \mathcal{R} , with associated automorphisms σ and τ of \mathcal{R} , such that σ , τ and d commute with \star satisfying $[d(U), d(U)]_{\sigma, \tau} = \{0\}$, then \mathcal{R} is commutative, where U is an ideal of \mathcal{R} such that $U^{\star} = U$.

1 Introduction

Throughout, \mathcal{R} will denote an associative ring with center $Z(\mathcal{R})$. An additive mapping $d: \mathcal{R} \to \mathcal{R}$ is said to be a derivation of \mathcal{R} if d(xy) = d(x)y + xd(y) holds for all $x, y \in \mathcal{R}$. For a fixed $a \in \mathcal{R}$, the mapping $I_a: \mathcal{R} \to \mathcal{R}$ given by $I_a(x) = [a, x] = ax - xa$ is a derivation which is said to be an inner derivation. Recall that \mathcal{R} is said to be prime if $a\mathcal{R}b = \{0\}$ implies a = 0 or b = 0. A ring \mathcal{R} is said to be 2-torsion free, if 2x = 0 implies x = 0.

For any two endomorphisms σ and τ of \mathcal{R} , we call an additive mapping $d: \mathcal{R} \to \mathcal{R}$ a (σ, τ) -derivation of \mathcal{R} if $d(xy) = d(x)\sigma(y) + \tau(x)d(y)$ for all $x, y \in \mathcal{R}$. Of course, a (1, 1)-derivation is a derivation on \mathcal{R} , where 1 is the

Key words: Prime-rings, derivations, ideal, Involution map. 2012 AMS Mathematics Classification: 16W10.

identity mapping on \mathcal{R} . We set $[x,y]_{\sigma,\tau} = x\sigma(y) - \tau(y)x$. In particular $[x,y]_{1,1} = [x,y] = xy - yx$, is the usual Lie product.

An additive mapping $x \mapsto x^*$ on a ring \mathcal{R} is called an involution if $(x^*)^* = x$ and $(xy)^* = y^*x^*$ hold for all $x, y \in \mathcal{R}$. A ring equipped with an involution is called a ring with involution or \star -ring. A ring \mathcal{R} equipped with an involution \star is said to be \star -prime if $a\mathcal{R}b = a\mathcal{R}b^* = \{0\}$ (or, equivalently $a\mathcal{R}b = a^*\mathcal{R}b = \{0\}$) implies a = 0 or b = 0. It is important to note that, a prime ring is \star -prime, but the converse is in general not true. An example due to Shulaing [13] justifies this fact. If \mathcal{R}° denotes the opposite ring of a prime ring \mathcal{R} , then $S = \mathcal{R} \times \mathcal{R}^\circ$ equipped with the exchange involution \star_{ex} defined by $\star_{ex}(x,y) = (y,x)$ is \star_{ex} -prime, but not a prime ring because of the fact that (1,0)S(0,1) = 0. In all that follows, $Sa_\star(\mathcal{R})$ will denote the set of symmetric and skew symmetric elements of \mathcal{R} , i.e., $Sa_\star(\mathcal{R}) = \{x \in \mathcal{R} | x^* = \pm x\}$. An ideal U of \mathcal{R} is said to be a \star -ideal of \mathcal{R} if $U^* = U$. It can also be noted that an ideal of a ring \mathcal{R} may not be \star -ideal of \mathcal{R} . As an example, let $\mathcal{R} = \mathbb{Z} \times \mathbb{Z}$, and consider an involution \star on \mathcal{R} such that $(a, b)^* = (b, a)$ for all $(a, b) \in \mathcal{R}$. The subset $U = \mathbb{Z} \times \{0\}$ of \mathcal{R} is an ideal of \mathcal{R} but it is not a \star -ideal of \mathcal{R} , because $U^* = \{0\} \times \mathbb{Z} \neq U$.

Let \mathcal{R} be a ring with involution \star . An additive mapping $d: \mathcal{R} \to \mathcal{R}$ is said to be a \star -derivation if $d(xy) = d(x)y^* + xd(y)$ holds for all $x,y \in \mathcal{R}$. The concept of \star -derivation was introduced by Brešar and Vukman in [8]. In [1], Shakir and Fošner introduced (σ,τ) - \star -derivation as follows: Let σ and τ be two endomorphism of \mathcal{R} . An additive mapping $d: \mathcal{R} \to \mathcal{R}$ is said to be (σ,τ) - \star -derivation if $d(xy) = d(x)\sigma(y^*) + \tau(x)d(y)$, holds for all $x,y \in \mathcal{R}$. In [8], Brešar and Vukman studied some algebraic properties of \star -derivations.

Recently many authors have studied commutativity of prime and semiprime rings with involution admitting suitably constrained derivations (for reference see [2, 12, 16, 20] etc). A lot of work have been done by L. Okhtite and his co-authors on rings with involution (see for reference [17, 18, 19], where further references can be found).

In [15], Lee and Lee proved that if a prime ring of characteristic different from 2 admits a derivation d such that $[d(\mathcal{R}), d(\mathcal{R})] \subseteq Z(\mathcal{R})$, then \mathcal{R} is commutative. On the other hand in [11] for $a \in \mathcal{R}$, Herstein proved that if $[a, d(\mathcal{R})] = \{0\}$, then $a \in Z(\mathcal{R})$. Further in the year 1992, Aydin together with Kaya [7] extended the theorems mentioned above by replacing derivation by (σ, τ) -derivation and in some of those, \mathcal{R} by a non-zero ideal of \mathcal{R} . Recently, in [4] we investigated the commutativity of \star -prime ring \mathcal{R} equipped with an involution \star admitting a (σ, τ) -derivation d satisfying $[d(U), d(U)]_{\sigma, \tau} = \{0\}$, where U is a nonzero \star -ideal of \mathcal{R} . In this paper we prove the above mentioned theorem in case of (σ, τ) - \star -derivation. In fact, it is shown that if a \star -prime ring admits a nonzero (σ, τ) - \star -derivation d satisfying $[d(U), d(U)]_{\sigma, \tau} = \{0\}$, then \mathcal{R} is commutative.

2 The Results

In the remaining part of the paper, \mathcal{R} will represent a *-prime ring which admits a nonzero (σ, τ) -*-derivation d with automorphisms σ and τ such that * commutes with d, σ and τ . We shall use the following relations frequently without specific mention:

$$[xy, z]_{\sigma,\tau} = x[y, z]_{\sigma,\tau} + [x, \tau(z)]y = x[y, \sigma(z)] + [x, z]_{\sigma,\tau}y,$$
$$[x, yz]_{\sigma,\tau} = \tau(y)[x, z]_{\sigma,\tau} + [x, y]_{\sigma,\tau}\sigma(z),$$

and

$$[x, [y, z]]_{\sigma, \tau} + [[x, z]_{\sigma, \tau}, y]_{\sigma, \tau} - [[x, y]_{\sigma, \tau}, z]_{\sigma, \tau} = 0.$$

Remark 2.1. We find that if \mathcal{R} is a \star -prime ring with characteristic different from 2, then \mathcal{R} is a 2-torsion free. In fact, if 2x=0 for all $x\in\mathcal{R}$, then xr(2s)=0 for all $r,s\in\mathcal{R}$. But since char $\mathcal{R}\neq 2$, there exists a nonzero $l\in\mathcal{R}$ such that $2l\neq 0$ and hence by the above $x\mathcal{R}2l=\{0\}$. This also gives that $x\mathcal{R}(2l)^{\star}=\{0\}$ and \star -primeness of \mathcal{R} yields that x=0, i.e., \mathcal{R} is 2-torsion free.

The main result of the present paper states as follows:

Theorem 2.2. Let \mathcal{R} be a \star - prime ring with characteristic different from two and σ, τ be automorphisms of \mathcal{R} , and U a \star -ideal of \mathcal{R} . If \mathcal{R} admits a non-zero (σ, τ) - \star -derivation $d: \mathcal{R} \to \mathcal{R}$ such that $[d(U), d(U)]_{\sigma, \tau} = \{0\}$, then \mathcal{R} is commutative.

We facilitate our discussion with the following lemmas which are required for developing the proof of our main result.

Since every \star -prime ring is semiprime and every \star -right ideal is right ideal. Hence Lemma 1.1.5 of [9] can be rewritten in case of \star -prime ring as follows: Lemma 2.3. Let \mathcal{R} be a \star -prime ring and U a non-zero \star -right ideal of \mathcal{R} . Then $Z(U) \subseteq Z(\mathcal{R})$.

Corollary 2.4. Let \mathcal{R} be a \star -prime ring and U a non-zero \star -right ideal of \mathcal{R} . If U is commutative then \mathcal{R} is commutative.

Proof. Since U, is commutative, by the Lemma 2.3, we have $U = Z(U) \subseteq Z(\mathcal{R})$. If for any $x, y \in \mathcal{R}$, $a \in U$ we have $ax \in U$ and hence $ax \in Z(\mathcal{R})$ and hence (ax)y = y(ax) = ayx. This further yields $U(xy - yx) = \{0\}$. Since U is a non-zero \star -right ideal of \mathcal{R} , we have $U\mathcal{R}(xy - yx) = \{0\} = U^*\mathcal{R}(xy - yx)$. Also, since $U \neq \{0\}$ right ideal, \star -primeness of \mathcal{R} gives xy - yx = 0, for all $x, y \in \mathcal{R}$. Hence \mathcal{R} is commutative.

Lemma 2.5. Let \mathcal{R} be a \star -prime ring and U a non-zero \star -right ideal of \mathcal{R} . Suppose that $a \in \mathcal{R}$ centralizes U. Then $a \in Z(\mathcal{R})$.

Proof. Since a centralizes U, for all $u \in U$ and $x \in \mathcal{R}$, aux = uxa. But au = ua, therefore uax = uxa, i.e., u[a, x] = 0. On replacing u by uy for any $y \in \mathcal{R}$, we get $u\mathcal{R}[a, x] = \{0\}$ for all $u \in U$, $x \in \mathcal{R}$. Also, since U is \star -right ideal, we get $u^*\mathcal{R}[a, x] = \{0\}$. Again since $U \neq \{0\}$, \star -primeness of \mathcal{R} yields that [a, x] = 0 for all $x \in \mathcal{R}$. Therefore, $a \in Z(\mathcal{R})$.

Lemma 2.6. Let \mathcal{R} be a \star -prime ring and U a \star -right ideal of \mathcal{R} . Suppose d is a (σ, τ) - \star -derivation of \mathcal{R} satisfying $d(U) = \{0\}$, then d = 0.

Proof. For all $u \in U$ and $x \in \mathcal{R}$, $0 = d(ux) = d(u)\sigma(x^*) + \tau(u)d(x) = \tau(u)d(x)$. On replacing x by xy for any $y \in \mathcal{R}$, we get $\tau(u)d(x)\sigma(y^*) + \tau(u)\tau(x)d(y) = 0$, or, $\tau(u)\tau(x)d(y) = 0$, i.e., $\tau(u)\mathcal{R}d(y) = \{0\}$ for all $u \in U$ and $y \in \mathcal{R}$. Also since U is a \star -right ideal, we get $\tau(u)^*\mathcal{R}d(y) = \{0\}$. Also, \star -primeness of \mathcal{R} yields that $\tau(u) = 0$ for all $u \in U$ or d = 0. Since $U \neq \{0\}$, we get d = 0.

Lemma 2.7. Let \mathcal{R} be a \star -prime ring, U a non-zero \star -ideal of \mathcal{R} and $a \in \mathcal{R}$. Suppose d is a (σ, τ) - \star -derivation of \mathcal{R} satisfying $ad(U) = \{0\}$ (or, $d(U)a = \{0\}$), then a = 0 or d = 0.

Proof. For $u \in U$, $x \in \mathcal{R}$, $0 = ad(ux) = ad(u)\sigma(x^*) + a\tau(u)d(x)$. By assumption, we have $a\tau(u)d(x) = 0$, for all $x \in \mathcal{R}$. On replacing u by uy for any $y \in \mathcal{R}$, we obtain $a\tau(u)\mathcal{R}d(x) = \{0\}$ for all $u \in U$, $x \in \mathcal{R}$. Also, $a\tau(u)\mathcal{R}d(x)^* = \{0\}$. Since \mathcal{R} is *-prime, we find that either $a\tau(u) = 0$ or d(x) = 0. If $a\tau(u) = 0$ for all $u \in U$, then or $\tau^{-1}(a)U = \{0\}$. Now since U is *-ideal, we can write $\tau^{-1}(a)U^* = \{0\}$. This implies that $\tau^{-1}(a)\mathcal{R}U = \{0\} = \tau^{-1}(a)\mathcal{R}U^*$. By the *-primeness of \mathcal{R} , we obtain $\tau^{-1}(a) = 0$, since $U \neq \{0\}$. In conclusion, we get either a = 0 or d = 0. Similarly, $d(U)a = \{0\}$ implies a = 0 or d = 0.

Lemma 2.8. Let d be a non-zero (σ, τ) - \star -derivation of \star -prime ring \mathcal{R} and U a \star -right ideal of \mathcal{R} . If $d(U) \subseteq Z(\mathcal{R})$, then \mathcal{R} is commutative.

Proof. Since $d(U) \subseteq Z(\mathcal{R})$, we have $[d(U), \mathcal{R}] = \{0\}$. For $u, v \in U$ and $x \in \mathcal{R}$,

$$[x, d(uv)] = [x, d(u)\sigma(v^*) + \tau(u)d(v)] = d(u)[x, \sigma(v^*)] + d(v)[x, \tau(u)] = 0.$$
(1)

Replacing x by $x\sigma(v^*)$, $v \in U$ in (1), we have

$$0 = d(u)[x\sigma(v^*), \sigma(v^*)] + d(v)[x\sigma(v^*), \tau(u)] = d(u)[x, \sigma(v^*)]\sigma(v^*) + d(v)(x[\sigma(v^*), \tau(u)] + [x, \tau(u)]\sigma(v^*)).$$

By using (1), we get

$$d(v)\mathcal{R}[\sigma(v^*), \tau(u)] = \{0\}, \text{ for all } u, v \in U.$$
 (2)

Let $v \in U \cap Sa_{\star}(\mathcal{R})$. From (2), it follows that

$$d(v)^* \mathcal{R}[\sigma(v^*), \tau(u)] = \{0\}, \text{ for all } u \in U.$$
(3)

By (2) and (3), the *-primeness of \mathcal{R} yields that d(v) = 0 or $[\sigma(v^*), \tau(u)] = 0$ for all $u \in U$. Let $w \in U$, since $w - w^* \in U \cap Sa_*(\mathcal{R})$, then

$$d(w - w^*) = 0$$
 or $[\sigma(w - w^*)^*, \tau(u)] = 0$.

Assume that $d(w - w^*) = 0$. Then $d(w) = d(w^*)$. Replacing v by w^* in (2) and since U is \star -right ideal, we get $d(w^*)\mathcal{R}[\sigma(w^*)^*, \tau(u)] = \{0\}$ for all $u \in U$. Consequently,

$$d(w)\mathcal{R}[\sigma(w^*), \tau(u)]^* = \{0\}, \text{ for all } u, w \in U.$$
(4)

Also by (2), we get $d(w)\mathcal{R}[\sigma(w^*), \tau(u)] = \{0\}$, on using *-primeness of \mathcal{R} together with (4), we find that for each $w \in U$ either d(w) = 0 or $[\sigma(w)^*, \tau(u)] = 0$, for all $u \in U$. Now suppose the remaining case that $[\sigma(v)^*, \tau(u)] = 0$, for all $u \in U$. Then we have $[\sigma(w - w^*)^*, \tau(u)] = 0 = [\sigma(w - w^*), \tau(u)]$, or $[\sigma(w), \tau(u)] = [\sigma(w^*), \tau(u)]$. Replacing v by w^* in (2), we get $d(w^*)\mathcal{R}[\sigma(w^*)^*, \tau(u)] = \{0\}$ for all $u \in U$. Consequently, $d(w^*)\mathcal{R}[\sigma(w), \tau(u)] = \{0\}$. This yields that

or,
$$d(w^*)\mathcal{R}[\sigma(w)^*, \tau(u)] = \{0\}$$
, for all $u, w \in U$. (5)

Since $d(w)\mathcal{R}[\sigma(w^*), \tau(u)] = \{0\}$, by (2), the *-primeness of \mathcal{R} together with (5) assure that for each $w \in U$ either d(w) = 0 or $[\sigma(w^*), \tau(u)] = 0$, for all $u \in U$. In conclusion, for each fixed $w \in U$, we have

either
$$d(w) = 0$$
 or $[\sigma(w^*), \tau(u)] = 0$ for all $u \in U$.

Now, define

$$K = \{w \in U \mid d(w) = 0\} \text{ and } L = \{w \in U \mid [\sigma(w^*), \tau(u)] = 0 \text{ for all } u \in U\}.$$

Clearly both K and L are additive subgroups of U whose union is U. But a group cannot be a set theoretic union of two of it's proper subgroups and hence either K = U or L = U. If K = U, then $d(U) = \{0\}$ and hence by Lemma 2.6, d = 0, a contradiction, therefore now assume that L = U, i.e.,

$$[\sigma(w^*), \tau(u)] = 0 \text{ for all } u, w \in U.$$
 (6)

Replacing w^* by $w'\sigma^{-1}(\tau(v))$, $u \in U$, in (6) and using (6), we get $\sigma(w')\tau([v,u]) = 0$, for all $u, v, w' \in U$. On replacing w' by w'x for any $x \in \mathcal{R}$, we get $\sigma(w')\mathcal{R}\tau([v,u]) = \{0\}$, for all $u, v, w' \in U$. Also, since U is \star -right ideal, we get $\sigma(w')^*\mathcal{R}\tau([v,u]) = \{0\}$, for all $u, v, w' \in U$. Since \mathcal{R} is \star -prime, we find that $\sigma(w') = 0$ or $\tau[v,u] = 0$ for all $u, v, w' \in U$. Since $U \neq \{0\}$, we have U is commutative. In view of Corollary 2.4, we obtain the commutativity of \mathcal{R} .

We are now well equipped to prove our main theorem:

Proof of Theorem 2.2. First we will show that for any $a \in Sa_{\star}(\mathcal{R})$ such that $[d(U), a]_{\sigma,\tau} = \{0\}$, then $a \in Z(\mathcal{R})$. For any $v \in U$, using the hypothesis, we have

$$\begin{array}{lll} 0 & = & [d(uv^\star),a]_{\sigma,\tau} \\ & = & [d(u)\sigma(v)+\tau(u)d(v^\star),a]_{\sigma,\tau} \\ & = & d(u)\sigma(v)\sigma(a)+\tau(u)d(v^\star)\sigma(a)-\tau(a)d(u)\sigma(v)-\tau(a)\tau(u)d(v^\star). \end{array}$$

In view of the hypothesis the above relation yields

$$d(u)\sigma([v,a]) + \tau([u,a])d(v^*) = 0 \text{ for all } u, v \in U.$$
(7)

Replace u by au in (7) and use (7) to get

$$0 = d(au)\sigma([v, a]) + \tau([au, a])(d(v^*))$$

= $\{d(a)\sigma(u^*) + \tau(a)d(u)\}\sigma([v, a]) + \tau(a)\tau([u, a])d(v^*).$

We have $d(a)\sigma(u^*)\sigma([v,a])=0$, for all $u,v\in U$. Replace u^* by xw for any $x\in \mathcal{R},\ w\in U$ we find that $d(a)\mathcal{R}\sigma(w)\sigma([v,a])=\{0\}$, for all $w,v\in U$. Since $a\in Sa_*(\mathcal{R})$, the above expression can be rewritten as $d(a)^*\mathcal{R}\sigma(w)\sigma([v,a])=\{0\}$, for all $u,v\in U$. On using *-primeness of \mathcal{R} , we obtain that for all $u,v\in U$

$$\sigma(w)\sigma([v,a]) = 0 \text{ or } d(a) = 0.$$
(8)

Let us suppose that d(a) = 0. Then for all $u \in U$,

$$\begin{array}{lll} d([u,a^{\star}]) & = & d(ua^{\star}-a^{\star}u) \\ & = & d(u)\sigma(a) + \tau(u)d(a^{\star}) - d(a^{\star})\sigma(u^{\star}) - \tau(a^{\star})d(u) \\ & = & d(u)\sigma(a) - \tau(a^{\star})d(u) - \tau(a)d(u) + \tau(a)d(u) \\ & = & [d(u),a]_{\sigma,\tau} + \tau(a-a^{\star})d(u) \\ & = & \tau(a-a^{\star})d(u). \end{array}$$

Hence the above yields that

$$d([u, a^*]) - \tau(a - a^*)d(u) = 0.$$
(9)

On replacing u by uv, $v \in U$, in (9) and on using the same, we get

$$\tau([u, a^{\star}])d(v) + d(u)\sigma([v, a^{\star}])^{\star} + \tau(u)d([v, a^{\star}]) - \tau(a - a^{\star})\tau(u)d(v) = 0.$$

By using (9), for all $u, v, w \in U$ we have

$$\begin{array}{lll} 0 & = & \tau([u,a^{\star}])d(v) + d(u)\sigma([v,a^{\star}])^{\star} \\ & & + \tau(u)\tau(a-a^{\star})d(v) - \tau(a-a^{\star})\tau(u)d(v) \\ & = & \tau([u,a^{\star}])d(v) + d(u)\sigma([v,a^{\star}])^{\star} + \tau([u,a-a^{\star}])d(v) \\ & = & \tau([u,a])d(v) + d(u)\sigma([v,a^{\star}])^{\star}. \end{array}$$

Again by using (7), we have

$$\begin{array}{rcl} 0 & = & -d(u)\sigma([v^\star,a]) + d(u)\sigma([v,a^\star])^\star \\ & = & 2d(u)\sigma([a,v^\star]). \end{array}$$

Since char $\mathcal{R} \neq 2$, we get $d(u)\sigma([a,v^*]) = 0$ for all $u,v \in U$. Replacing v^* by w in the above relation, we get $d(u)\sigma([a,w]) = 0$ for all $u,w \in U$. Substituting w by ww' for any $w' \in U$, reduces the above relation to $d(u)U\sigma([a,w']) = \{0\}$ for all $u,v,w \in U$, or $\sigma^{-1}(d(u))U[a,w'] = \{0\}$ for all $u,v,w \in U$. Therefore,

$$\sigma^{-1}(d(u))\mathcal{R}U[a,w'] = \{0\} \text{ for all } u,v,w \in U.$$

Since U is a \star -ideal, using \star -primeness of \mathcal{R} , we get either $\sigma^{-1}(d(u))=0$ for all $u\in U$ or $U[a,w']=\{0\}$ for all $w'\in U$. Since $d(U)\neq\{0\}$, we have $U[a,w']=\{0\}=U\mathcal{R}[a,w']$. Since U is a nonzero \star -ideal, using \star -primeness of \mathcal{R} , we get [a,w']=0, for all $w'\in U$. This reduces to $[U,a]=\{0\}$. In view of Lemma 2.5, we find that $a\in Z(\mathcal{R})$. In view of (8) consider the remaining part $\sigma(w)\sigma([v,a])=0$ for all $w,v\in U$, i.e., w[v,a]=0 for all $w,v\in U$. On replacing w by wx for any $x\in \mathcal{R}$, the above equation reduces to $w\mathcal{R}[v,a]=\{0\}$, for all $w,v\in U$. Also, U being a \star -ideal, we get $w^*\mathcal{R}[v,a]=\{0\}$. Using the \star -primeness of \mathcal{R} we find that either $[v,a]=\{0\}$ or $U=\{0\}$. Since $U=\{0\}$ is not possible, it reduces to $[U,a]=\{0\}$. Hence again in view of Lemma 2.5, we find that $a\in Z(\mathcal{R})$, and by our hypothesis we obtain that $d(U)\subseteq Z(\mathcal{R})$. So by Lemma 2.8, \mathcal{R} is commutative.

Acknowledgement: The authors would like to thank the referee for careful reading and suggestions.

References

- [1] S. Ali and A. Fošner, On Jordan $(\alpha, \beta)^*$ -derivation in semiprime ring, Int. J. Algebra, $\mathbf{4(3)}(2010)$, 99-108.
- M. Ashraf and S. Ali, On (α, β)*-derivations in H*-algebras, Adv. Algebra 2(1)(2009), 23-31.
- [3] M. Ashraf and A. Khan, Commutativity of *-prime rings with generalized derivations, Rend. Semin. Mat. Univ. Padova. 125(2011), 75-79.
- [4] M. Ashraf and N. Parveen, Some commutativity theorems for ⋆-prime rings with (σ, τ)derivation, Bull. Iranian Math. Soc. (2015), to appear.
- [5] M. Ashraf and N. Rehman, On derivation and commutativity in prime rings, East-West J. of Math. 3(1)(2001), 87-91.
- [6] M. Ashraf and N. Rehman, On commutativity of rings with derivation, Result. Math. 42(2002), 3-8.
- [7] N. Aydin and K. Kaya, Some generalizations in prime rings with (σ, τ)-derivation, Turk.
 J. Math. 16(1992), 169-176.
- [8] M. Brešar and J. Vukman, On some additive mappings in rings with involution, Aequationes Math. 38(1989), 178-186.

- [9] I. N. Herstein, Rings with involution, Univ. Chicago press, Chicago, (1976)
- [10] I. N. Herstein, "A note on derivation", Canad. Math. Bull. 21(3)(1978), 369-370.
- [11] I. N. Herstein, "A note on derivation II", Canad. Math. Bull. 22(4)(1979), 509-511.
- [12] I. N. Herstein, A theorem on derivations of prime rings with involution, Canad. J. Math. 34(1982), 356-369.
- [13] S. Huang, Some generalizations in certain classes of rings with involution, Bol. Soc. Paran. Mat. **29(1)**(2011), 9-16.
- [14] K. Kaya, " (σ, τ) -türevli asal halkalar üzerine", TU. Mat. D.C., **12(2)**(1988), 42-45.
- [15] P. H. Lee and T. K. Lee, "On derivations of prime rings", Chinese J. Math. 9(2)(1981), 107-110.
- [16] T. K. Lee, On derivations of prime rings with involution, Chinese J. Math. 13(1985), 179-186.
- [17] L. Okhtite, On derivations in σ -prime rings, Int. J. Algebra. 1(5)(2007), 241-246.
- [18] L. Okhtite, Some properties of derivations on rings with involution, Int. J. Mod. Math. 4(3)(2009), 309-315.
- [19] L. Okhtite, Commutativity conditions on derivations and Lie ideals in σ-prime rings, Beitr. Algebra Geom., 51(1)(2010), 275-282.
- [20] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8(1957), 1093-1100.