East-West J. of Mathematics: Vol. 22, No 2 (2020) pp. 103-110

https://doi.org/10.36853/ewjm0372

ON (σ, τ) -***-DERIVATION AND COMMUTATIVITY OF -PRIME RING**

Ahmad N. Alkenani *†* and **Nazia Parveen** *‡*

† Department of Mathematics, Faculty of Science King Abdulaziz University P. O. Box-80219 Jeddah-21589(Saudi Arabia) e-mail: aalkenani10@hotmail.com

‡Department of Mathematics College of Science and Arts Yanbu, Taibah University, Madina (Saudi Arabia) e-mail: naziamath@gmail.com

Abstract

In this paper we study the notion of (σ, τ) - \star -derivation and prove the following result: Let R be a \star -prime ring with characteristic different from two and $Z(\mathcal{R})$ be the center of \mathcal{R} . If \mathcal{R} admits a non-zero (σ, τ) - \star -derivation d of \mathcal{R} , with associated automorphisms σ and τ of \mathcal{R} , such that σ , τ and d commute with \star satisfying $[d(U), d(U)]_{\sigma,\tau} = \{0\}$, then \mathcal{R} is commutative, where U is an ideal of R such that $U^* = U$.

1 Introduction

Throughout, $\mathcal R$ will denote an associative ring with center $Z(\mathcal R)$. An additive mapping $d : \mathcal{R} \to \mathcal{R}$ is said to be a derivation of \mathcal{R} if $d(xy) = d(x)y + xd(y)$ holds for all $x, y \in \mathcal{R}$. For a fixed $a \in \mathcal{R}$, the mapping $I_a : \mathcal{R} \to \mathcal{R}$ given by $I_a(x)=[a, x] = ax - xa$ is a derivation which is said to be an inner derivation. Recall that R is said to be prime if $aRb = \{0\}$ implies $a = 0$ or $b = 0$. A ring R is said to be 2-torsion free, if $2x = 0$ implies $x = 0$.

For any two endomorphisms σ and τ of \mathcal{R} , we call an additive mapping $d: \mathcal{R} \to \mathcal{R}$ a (σ, τ) -derivation of \mathcal{R} if $d(xy) = d(x)\sigma(y) + \tau(x)d(y)$ for all $x, y \in \mathcal{R}$. Of course, a (1, 1)-derivation is a derivation on \mathcal{R} , where 1 is the

Key words: Prime-rings , derivations , ideal, Involution map. 2012 AMS Mathematics Classification: 16W10.

identity mapping on R. We set $[x, y]_{\sigma,\tau} = x\sigma(y) - \tau(y)x$. In particular $[x, y]_{1,1} =$ $[x, y] = xy - yx$, is the usual Lie product.

An additive mapping $x \mapsto x^*$ on a ring R is called an involution if $(x^*)^* = x$ and $(xy)^* = y^*x^*$ hold for all $x, y \in \mathcal{R}$. A ring equipped with an involution is called a ring with involution or \star -ring. A ring R equipped with an involution \star is said to be \star -prime if $aRb = aRb^* = \{0\}$ (or, equivalently $aRb = a^*\mathcal{R}b = \{0\}$) implies $a = 0$ or $b = 0$. It is important to note that, a prime ring is \star -prime, but the converse is in general not true. An example due to Shulaing [13] justifies this fact. If \mathcal{R}° denotes the opposite ring of a prime ring \mathcal{R} , then $S = \mathcal{R} \times \mathcal{R}^{\circ}$ equipped with the exchange involution \star_{ex} defined by $\star_{ex}(x, y)=(y, x)$ is \star_{ex} prime, but not a prime ring because of the fact that $(1, 0)S(0, 1) = 0$. In all that follows, $Sa_{\star}(\mathcal{R})$ will denote the set of symmetric and skew symmetric elements of R, i.e., $Sa_{\star}(\mathcal{R}) = \{x \in \mathcal{R} | x^{\star} = \pm x\}.$ An ideal U of R is said to be a \star -ideal of R if $U^* = U$. It can also be noted that an ideal of a ring R may not be \star -ideal of R. As an example, let $\mathcal{R} = \mathbb{Z} \times \mathbb{Z}$, and consider an involution \star on R such that $(a, b)^* = (b, a)$ for all $(a, b) \in \mathcal{R}$. The subset $U = \mathbb{Z} \times \{0\}$ of R is an ideal of R but it is not a \star -ideal of R, because $U^* = \{0\} \times \mathbb{Z} \neq U$.

Let R be a ring with involution \star . An additive mapping $d : \mathcal{R} \to \mathcal{R}$ is said to be a \star -derivation if $d(xy) = d(x)y^* + xd(y)$ holds for all $x, y \in \mathcal{R}$. The concept of \star -derivation was introduced by Brešar and Vukman in [8]. In [1], Shakir and Fošner introduced (σ, τ) - \star -derivation as follows: Let σ and τ be two endomorphism of R. An additive mapping $d : \mathcal{R} \to \mathcal{R}$ is said to be (σ, τ) - \star -derivation if $d(xy) = d(x)\sigma(y^*) + \tau(x)d(y)$, holds for all $x, y \in \mathcal{R}$. In [8], Bre $\overline{\text{sa}}$ and Vukman studied some algebraic properties of \star -derivations.

Recently many authors have studied commutativity of prime and semiprime rings with involution admitting suitably constrained derivations (for reference see [2, 12, 16, 20] etc). A lot of work have been done by L. Okhtite and his co-authors on rings with involution (see for reference [17, 18, 19], where further references can be found).

In [15], Lee and Lee proved that if a prime ring of characteristic different from 2 admits a derivation d such that $[d(\mathcal{R}), d(\mathcal{R})] \subseteq Z(\mathcal{R})$, then $\mathcal R$ is commutative. On the other hand in [11] for $a \in \mathcal{R}$, Herstein proved that if $[a, d(\mathcal{R})] = \{0\}$, then $a \in Z(\mathcal{R})$. Further in the year 1992, Aydin together with Kaya [7] extended the theorems mentioned above by replacing derivation by (σ, τ) -derivation and in some of those, $\mathcal R$ by a non-zero ideal of $\mathcal R$. Recently, in [4] we investigated the commutativity of \star -prime ring $\mathcal R$ equipped with an involution \star admitting a (σ, τ) -derivation d satisfying $[d(U), d(U)]_{\sigma,\tau} = \{0\},\$ where U is a nonzero \star -ideal of R. In this paper we prove the above mentioned theorem in case of (σ, τ) - \star -derivation. In fact, it is shown that if a \star -prime ring admits a nonzero (σ, τ) - \star -derivation d satisfying $[d(U), d(U)]_{\sigma,\tau} = \{0\}$, then \mathcal{R} is commutative.

2 The Results

In the remaining part of the paper, R will represent a \star -prime ring which admits a nonzero (σ, τ) - \star -derivation d with automorphisms σ and τ such that \star commutes with d, σ and τ . We shall use the following relations frequently without specific mention:

$$
[xy, z]_{\sigma,\tau} = x[y, z]_{\sigma,\tau} + [x, \tau(z)]y = x[y, \sigma(z)] + [x, z]_{\sigma,\tau}y,
$$

$$
[x, yz]_{\sigma,\tau} = \tau(y)[x, z]_{\sigma,\tau} + [x, y]_{\sigma,\tau}\sigma(z),
$$

$$
[x, [y, z]]_{\sigma,\tau} + [[x, z]_{\sigma,\tau}, y]_{\sigma,\tau} - [[x, y]_{\sigma,\tau}, z]_{\sigma,\tau} = 0.
$$

and

free.

Remark 2.1. We find that if R is a
$$
\star
$$
-prime ring with characteristic different
from 2, then R is a 2-torsion free. In fact, if $2x = 0$ for all $x \in R$, then
 $xr(2s) = 0$ for all $r, s \in R$. But since char $R \neq 2$, there exists a nonzero
 $l \in R$ such that $2l \neq 0$ and hence by the above $xR2l = \{0\}$. This also gives

that $x\mathcal{R}(2l)^* = \{0\}$ *and* \star -primeness of \mathcal{R} yields that $x = 0$, *i.e.*, \mathcal{R} is 2*-torsion*

The main result of the present paper states as follows:

Theorem 2.2. Let \mathcal{R} be a \star - prime ring with characteristic different from two and σ, τ be automorphisms of \mathcal{R} , and U a \star -ideal of \mathcal{R} . If \mathcal{R} admits a nonzero (σ, τ) - \star -derivation $d : \mathcal{R} \to \mathcal{R}$ such that $[d(U), d(U)]_{\sigma,\tau} = \{0\}$, then \mathcal{R} is commutative.

We facilitate our discussion with the following lemmas which are required for developing the proof of our main result.

Since every \star -prime ring is semiprime and every \star -right ideal is right ideal. Hence Lemma 1.1.5 of [9] can be rewritten in case of \star -prime ring as follows:

Lemma 2.3. Let \mathcal{R} be a \star -prime ring and U a non-zero \star -right ideal of \mathcal{R} . Then $Z(U) \subseteq Z(\mathcal{R}).$

Corollary 2.4. Let \mathcal{R} be a \star -prime ring and U a non-zero \star -right ideal of \mathcal{R} . If U is commutative then $\mathcal R$ is commutative.

Proof. Since U, is commutative, by the Lemma 2.3, we have $U = Z(U) \subseteq Z(\mathcal{R})$. If for any $x, y \in \mathcal{R}$, $a \in U$ we have $ax \in U$ and hence $ax \in Z(\mathcal{R})$ and hence $(ax)y = y(ax) = ayx$. This further yields $U(xy - yx) = \{0\}$. Since U is a non-zero \star -right ideal of R, we have $U\mathcal{R}(xy - yx) = \{0\} = U^*\mathcal{R}(xy - yx)$. Also, since $U \neq \{0\}$ right ideal, \star -primeness of R gives $xy - yx = 0$, for all $x, y \in \mathcal{R}$. Hence \mathcal{R} is commutative. *Lemma* 2.5. Let $\mathcal R$ be a \star -prime ring and U a non-zero \star -right ideal of $\mathcal R$. Suppose that $a \in \mathcal{R}$ centralizes U. Then $a \in Z(\mathcal{R})$.

Proof. Since a centralizes U, for all $u \in U$ and $x \in \mathcal{R}$, $aux = uxa$. But $au = ua$, therefore $uax = uxa$, i.e., $u[a, x] = 0$. On replacing u by uy for any $y \in \mathcal{R}$, we get $u\mathcal{R}[a, x] = \{0\}$ for all $u \in U$, $x \in \mathcal{R}$. Also, since U is \star -right ideal, we get $u^*R[a, x] = \{0\}$. Again since $U \neq \{0\}$, \star -primeness of R yields that $[a, x] = 0$ for all $x \in \mathcal{R}$. Therefore, $a \in Z(\mathcal{R})$.

Lemma 2.6. Let \mathcal{R} be a \star -prime ring and U a \star -right ideal of \mathcal{R} . Suppose d is a (σ, τ) - \star -derivation of R satisfying $d(U) = \{0\}$, then $d = 0$.

Proof. For all $u \in U$ and $x \in \mathcal{R}$, $0 = d(ux) = d(u)\sigma(x^*) + \tau(u)d(x) = \tau(u)d(x)$. On replacing x by xy for any $y \in \mathcal{R}$, we get $\tau(u)d(x)\sigma(y^*) + \tau(u)\tau(x)d(y)=0$, or, $\tau(u)\tau(x)d(y)=0$, i.e., $\tau(u)\mathcal{R}d(y)=\{0\}$ for all $u\in U$ and $y\in \mathcal{R}$. Also since U is a \star -right ideal, we get $\tau(u)^{\star} \mathcal{R}d(y) = \{0\}$. Also, \star -primeness of R yields that $\tau(u) = 0$ for all $u \in U$ or $d = 0$. Since $U \neq \{0\}$, we get $d = 0$.

Lemma 2.7. Let $\mathcal R$ be a \star -prime ring, U a non-zero \star -ideal of $\mathcal R$ and $a \in \mathcal R$. Suppose d is a (σ, τ) - \star -derivation of R satisfying $ad(U) = \{0\}$ (or, $d(U)a$ $\{0\}$, then $a = 0$ or $d = 0$.

Proof. For $u \in U$, $x \in \mathcal{R}$, $0 = ad(ux) = ad(u)\sigma(x^*)+a\tau(u)d(x)$. By assumption, we have $a\tau(u)d(x)=0$, for all $x \in \mathcal{R}$. On replacing u by uy for any $y \in \mathcal{R}$, we obtain $a\tau(u)\mathcal{R}d(x) = \{0\}$ for all $u \in U$, $x \in \mathcal{R}$. Also, $a\tau(u)\mathcal{R}d(x)^* = \{0\}$. Since R is \star -prime, we find that either $a\tau(u)=0$ or $d(x)=0$. If $a\tau(u)=0$ for all $u \in U$, then or $\tau^{-1}(a)U = \{0\}$. Now since U is \star -ideal, we can write $\tau^{-1}(a)U^* = \{0\}$. This implies that $\tau^{-1}(a)\mathcal{R}U = \{0\} = \tau^{-1}(a)\mathcal{R}U^*$. By the \star -primeness of R, we obtain $\tau^{-1}(a)=0$, since $U \neq \{0\}$. In conclusion, we get either $a = 0$ or $d = 0$. Similarly, $d(U)a = \{0\}$ implies $a = 0$ or $d = 0$. *Lemma* 2.8. Let d be a non-zero (σ, τ) - \star -derivation of \star -prime ring R and U a

 \star -right ideal of R. If $d(U)$ ⊂ $Z(\mathcal{R})$, then R is commutative.

Proof. Since
$$
d(U) \subseteq Z(\mathcal{R})
$$
, we have $[d(U), \mathcal{R}] = \{0\}$. For $u, v \in U$ and $x \in \mathcal{R}$,

$$
[x, d(uv)]=[x, d(u)\sigma(v^{\star})+\tau(u)d(v)]=d(u)[x, \sigma(v^{\star})]+d(v)[x, \tau(u)]=0. \eqno(1)
$$

Replacing x by $x\sigma(v^*)$, $v \in U$ in (1), we have

$$
0 = d(u)[x\sigma(v^*), \sigma(v^*)] + d(v)[x\sigma(v^*), \tau(u)]= d(u)[x, \sigma(v^*)]\sigma(v^*) + d(v)(x[\sigma(v^*), \tau(u)] + [x, \tau(u)]\sigma(v^*)).
$$

By using (1) , we get

$$
d(v)\mathcal{R}[\sigma(v^{\star}), \tau(u)] = \{0\}, \text{ for all } u, v \in U.
$$
 (2)

Let $v \in U \cap Sa_{\star}(\mathcal{R})$. From (2), it follows that

$$
d(v)^{\star} \mathcal{R}[\sigma(v^{\star}), \tau(u)] = \{0\}, \text{ for all } u \in U. \tag{3}
$$

By (2) and (3), the \star -primeness of R yields that $d(v) = 0$ or $[\sigma(v^{\star}), \tau(u)] = 0$ for all $u \in U$. Let $w \in U$, since $w - w^* \in U \cap S_a({\mathcal{R}})$, then

$$
d(w - w^*) = 0 \text{ or } [\sigma(w - w^*)^*, \tau(u)] = 0.
$$

Assume that $d(w - w^*) = 0$. Then $d(w) = d(w^*)$. Replacing v by w^{*} in (2) and since U is \star -right ideal, we get $d(w^{\star})\mathcal{R}[\sigma(w^{\star})^{\star}, \tau(u)] = \{0\}$ for all $u \in U$. Consequently,

$$
d(w)\mathcal{R}[\sigma(w^*), \tau(u)]^* = \{0\}, \text{ for all } u, w \in U. \tag{4}
$$

Also by (2), we get $d(w)\mathcal{R}[\sigma(w^*), \tau(u)] = \{0\}$, on using \star -primeness of $\mathcal R$ together with (4), we find that for each $w \in U$ either $d(w) = 0$ or $[\sigma(w)^*, \tau(u)] =$ 0, for all $u \in U$. Now suppose the remaining case that $[\sigma(v)^*, \tau(u)] = 0$, for all $u \in U$. Then we have $[\sigma(w - w^*)^*, \tau(u)] = 0 = [\sigma(w - w^*), \tau(u)]$, or $[\sigma(w), \tau(u)] = [\sigma(w^{\star}), \tau(u)]$. Replacing v by w^{\star} in (2), we get $d(w^{\star})\mathcal{R}[\sigma(w^{\star})^{\star}, \tau(u)] =$ $\{0\}$ for all $u \in U$. Consequently, $d(w^*)\mathcal{R}[\sigma(w), \tau(u)] = \{0\}$. This yields that

$$
\text{or, } d(w^*)\mathcal{R}[\sigma(w)^*, \tau(u)] = \{0\}, \text{ for all } u, w \in U. \tag{5}
$$

Since $d(w)\mathcal{R}[\sigma(w^*), \tau(u)] = \{0\}$, by (2), the \star -primeness of $\mathcal R$ together with (5) assure that for each $w \in U$ either $d(w) = 0$ or $[\sigma(w^*), \tau(u)] = 0$, for all $u \in U$. In conclusion, for each fixed $w \in U$, we have

either
$$
d(w) = 0
$$
 or $[\sigma(w^*), \tau(u)] = 0$ for all $u \in U$.

Now, define

$$
K = \{ w \in U \mid d(w) = 0 \} \text{ and } L = \{ w \in U \mid [\sigma(w^*), \tau(u)] = 0 \text{ for all } u \in U \}.
$$

Clearly both K and L are additive subgroups of U whose union is U . But a group cannot be a set theoretic union of two of it's proper subgroups and hence either $K = U$ or $L = U$. If $K = U$, then $d(U) = \{0\}$ and hence by Lemma 2.6, $d = 0$, a contradiction, therefore now assume that $L = U$, i.e.,

$$
[\sigma(w^*), \tau(u)] = 0 \text{ for all } u, w \in U.
$$
 (6)

Replacing w^* by $w'\sigma^{-1}(\tau(v))$, $u \in U$, in (6) and using (6), we get $\sigma(w')\tau([v, u]) =$ 0, for all $u, v, w' \in U$. On replacing w' by $w'x$ for any $x \in \mathcal{R}$, we get $\sigma(w')\mathcal{R}\tau([v, u]) =$ $\{0\}$, for all $u, v, w' \in U$. Also, since U is \star -right ideal, we get $\sigma(w')^{\star} \mathcal{R} \tau([v, u]) =$ $\{0\}$, for all $u, v, w' \in U$. Since $\mathcal R$ is \star -prime, we find that $\sigma(w') = 0$ or $\tau[v, u] = 0$ for all $u, v, w' \in U$. Since $U \neq \{0\}$, we have U is commutative. In view of Corollary 2.4, we obtain the commutativity of \mathcal{R} .

We are now well equipped to prove our main theorem:

Proof of Theorem 2.2. First we will show that for any $a \in Sa_{\star}(\mathcal{R})$ such that $[d(U), a]_{\sigma,\tau} = \{0\}$, then $a \in Z(\mathcal{R})$. For any $v \in U$, using the hypothesis, we have

$$
0 = [d(uv^*), a]_{\sigma, \tau}
$$

=
$$
[d(u)\sigma(v) + \tau(u)d(v^*), a]_{\sigma, \tau}
$$

=
$$
d(u)\sigma(v)\sigma(a) + \tau(u)d(v^*)\sigma(a) - \tau(a)d(u)\sigma(v) - \tau(a)\tau(u)d(v^*).
$$

In view of the hypothesis the above relation yields

$$
d(u)\sigma([v,a]) + \tau([u,a])d(v^*) = 0 \text{ for all } u, v \in U.
$$
 (7)

Replace u by au in (7) and use (7) to get

$$
0 = d(au)\sigma([v, a]) + \tau([au, a])(d(v^*)= {d(a)\sigma(u^*) + \tau(a)d(u)}\sigma([v, a]) + \tau(a)\tau([u, a])d(v^*).
$$

We have $d(a)\sigma(u^*)\sigma([v,a]) = 0$, for all $u, v \in U$. Replace u^* by xw for any $x \in \mathcal{R}, w \in U$ we find that $d(a)\mathcal{R}\sigma(w)\sigma([v,a]) = \{0\}$, for all $w, v \in U$. Since $a \in Sa_{\star}(\mathcal{R})$, the above expression can be rewritten as $d(a)^{\star} \mathcal{R}\sigma(w) \sigma([v, a]) =$ $\{0\}$, for all $u, v \in U$. On using \star -primeness of R, we obtain that for all $u, v \in U$

$$
\sigma(w)\sigma([v, a]) = 0 \text{ or } d(a) = 0.
$$
 (8)

Let us suppose that $d(a) = 0$. Then for all $u \in U$,

$$
d([u, a^*]) = d(ua^* - a^*u)
$$

=
$$
d(u)\sigma(a) + \tau(u)d(a^*) - d(a^*)\sigma(u^*) - \tau(a^*)d(u)
$$

=
$$
d(u)\sigma(a) - \tau(a^*)d(u) - \tau(a)d(u) + \tau(a)d(u)
$$

=
$$
[d(u), a]_{\sigma,\tau} + \tau(a - a^*)d(u)
$$

=
$$
\tau(a - a^*)d(u).
$$

Hence the above yields that

$$
d([u, a^*]) - \tau(a - a^*)d(u) = 0.
$$
 (9)

On replacing u by $uv, v \in U$, in (9) and on using the same, we get

$$
\tau([u,a^\star])d(v)+d(u)\sigma([v,a^\star])^\star+\tau(u)d([v,a^\star])-\tau(a-a^\star)\tau(u)d(v)=0.
$$

By using (9), for all $u, v, w \in U$ we have

$$
0 = \tau([u, a^*])d(v) + d(u)\sigma([v, a^*])^*
$$

+
$$
\tau(u)\tau(a - a^*)d(v) - \tau(a - a^*)\tau(u)d(v)
$$

=
$$
\tau([u, a^*])d(v) + d(u)\sigma([v, a^*])^* + \tau([u, a - a^*)]d(v)
$$

=
$$
\tau([u, a])d(v) + d(u)\sigma([v, a^*)]^*.
$$

Again by using (7), we have

$$
0 = -d(u)\sigma([v^*, a]) + d(u)\sigma([v, a^*])^*
$$

= $2d(u)\sigma([a, v^*]).$

Since char $\mathcal{R} \neq 2$, we get $d(u)\sigma([a, v^*]) = 0$ for all $u, v \in U$. Replacing v^* by w in the above relation, we get $d(u)\sigma([a, w]) = 0$ for all $u, w \in U$. Substituting w by ww' for any $w' \in U$, reduces the above relation to $d(u)U\sigma([a, w']) =$ $\{0\}$ for all $u, v, w \in U$, or $\sigma^{-1}(d(u))U[a, w'] = \{0\}$ for all $u, v, w \in U$. Therefore,

 $\sigma^{-1}(d(u))\mathcal{R}U[a, w'] = \{0\}$ for all $u, v, w \in U$.

Since U is a \star -ideal, using \star -primeness of R, we get either $\sigma^{-1}(d(u)) = 0$ for all $u \in U$ or $U[a, w'] = \{0\}$ for all $w' \in U$. Since $d(U) \neq \{0\}$, we have $U[a, w'] = \{0\} = U\mathcal{R}[a, w']$. Since U is a nonzero \star -ideal, using \star -primeness of \mathcal{R} , we get $[a, w'] = 0$, for all $w' \in U$. This reduces to $[U, a] = \{0\}$. In view of Lemma 2.5, we find that $a \in Z(\mathcal{R})$. In view of (8) consider the remaining part $\sigma(w)\sigma([v, a]) = 0$ for all $w, v \in U$, i.e., $w[v, a] = 0$ for all $w, v \in U$. On replacing w by wx for any $x \in \mathcal{R}$, the above equation reduces to $w\mathcal{R}[v, a] = \{0\}$, for all $w, v \in U$. Also, U being a \star -ideal, we get $w^{\star} \mathcal{R}[v, a] = \{0\}$. Using the \star primeness of R we find that either $[v, a] = \{0\}$ or $U = \{0\}$. Since $U = \{0\}$ is not possible, it reduces to $[U, a] = \{0\}$. Hence again in view of Lemma 2.5, we find that $a \in Z(\mathcal{R})$, and by our hypothesis we obtain that $d(U) \subseteq Z(\mathcal{R})$. So by Lemma 2.8, $\mathcal R$ is commutative. \Box

Acknowledgement: The authors would like to thank the referee for careful reading and suggestions.

References

- [1] S. Ali and A. Fošner, *On Jordan* $(\alpha, \beta)^*$ -derivation in semiprime ring, Int. J. Algebra, **4(3)**(2010), 99-108.
- [2] M. Ashraf and S. Ali, $On \ (\alpha, \beta)^*$ -derivations in H^{*}-algebras, Adv. Algebra **2(1)**(2009), 23-31.
- [3] M. Ashraf and A. Khan, *Commutativity of -prime rings with generalized derivations*, Rend. Semin. Mat. Univ. Padova. **125**(2011), 75-79.
- [4] M. Ashraf and N. Parveen, *Some commutativity theorems for* \star -prime rings with (σ, τ) *derivation*, Bull. Iranian Math. Soc. (2015), to appear.
- [5] M. Ashraf and N. Rehman, *On derivation and commutativity in prime rings*, East-West J. of Math. **3(1)**(2001), 87-91.
- [6] M. Ashraf and N. Rehman, *On commutativity of rings with derivation*, Result. Math. **42**(2002), 3-8.
- [7] N. Aydin and K. Kaya, *Some generalizations in prime rings with* (σ, τ) *-derivation*, Turk. J. Math. **16**(1992), 169-176.
- [8] M. Brešar and J. Vukman, *On some additive mappings in rings with involution*, Aequationes Math. **38**(1989), 178-186.
- [9] I. N. Herstein, Rings with involution, *Univ. Chicago press, Chicago,* (1976)
- [10] I. N. Herstein, *"A note on derivation"*, Canad. Math. Bull. **21(3)**(1978), 369-370.
- [11] I. N. Herstein, *"A note on derivation II"*, Canad. Math. Bull. **22(4)**(1979), 509-511.
- [12] I. N. Herstein, *A theorem on derivations of prime rings with involution*, Canad. J. Math. **34**(1982), 356-369.
- [13] S. Huang, *Some generalizations in certain classes of rings with involution*, Bol. Soc. Paran. Mat. **29(1)**(2011), 9-16.
- [14] K. Kaya, $\pi(\sigma, \tau)$ *-türevli asal halkalar üzerine*", TU. Mat. D.C., **12(2)**(1988), 42-45.
- [15] P. H. Lee and T. K. Lee, *"On derivations of prime rings"*, Chinese J. Math. **9(2)**(1981), 107-110.
- [16] T. K. Lee, *On derivations of prime rings with involution*, Chinese J. Math. **13**(1985), 179-186.
- [17] L. Okhtite, *On derivations in* σ*-prime rings*, Int. J. Algebra. **1(5)**(2007), 241-246.
- [18] L. Okhtite, *Some properties of derivations on rings with involution*, Int. J. Mod. Math. **4(3)**(2009), 309-315.
- [19] L. Okhtite, *Commutativity conditions on derivations and Lie ideals in* σ*-prime rings*, Beitr. Algebra Geom., **51(1)**(2010), 275-282.
- [20] E. C. Posner, *Derivations in prime rings*, Proc. Amer. Math. Soc. **8**(1957), 1093-1100.