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Abstract

The compact methodology of studying ∗-rings, is to study them in
its own independent category. In this paper we continue the study of
∗-rings and get the involutive definition of regularity of elements which
is compatible with the definition of *-regular *-rigs given by Kaplansky
and Berberian. We introduce also both strongly ∗-regular ∗-rings and the
concept of ∗-regular pairs which works as a weak definition of invertibility
of element.

1 Introduction

Throughout this paper, all rings are associative with identity. A ∗-ring R is
a ring with involution ∗. ∗-rings are objects of the category of rings with
involution with morphisms also preserving involution. Therefore the consistent
way of investigating ∗-rings is to study them within this category, as done in a
series of papers (for instance [1, 2].

A self-adjoint idempotent element e (i.e., e∗ = e = e2) is called a projection.
A ∗-ring R is said to be Abelian (resp. ∗-Abelian) if every idempotent (resp.
projection) of R is central. An involution ∗ is called proper if aa∗ �= 0 for
every nonzero element a ∈ R. A nonempty subset S of a ∗-ring R is said to be
self-adjoint or ∗-subset if it is closed under involution (i.e., S∗ = S).
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In a ∗-ring R, an element a is called ∗-nilpotent if an = (aa∗)m = 0 for
some positive integers n and m (see [3]). A ∗-ring without nonzero nilpotent
(resp. ∗-nilpotent) elements is called reduced (resp. ∗-reduced).

In 1936, von Neumann introduced his sense of regularity for the elements
of a ring during his study of von Neumann algebras and continuous geometry.
Von Neumann’s study of the projection lattices of certain operator algebras led
him to introduce continuous geometries and regular rings.

According to [11], an element a of a ring R is said to be von Neumann
regular (or simply regular) if there exists an element x, which is not necessary
depends on a such that a = axa and the ring R is regular if all its elements are
regular.

In [9], Kaplansky introduced the involutive version of regularity of rings to
use it as a basic tool in his work about the projection lattice of AW∗-algebra.
He showed that these lattice and others are continuous geometries. He called
a ∗-ring R ∗-regular if it is regular and ∗ is proper.

Latter, Berberian [6] proved that a ∗-ring R is ∗-regular if and only if for
each a ∈ R there exists a projection e such that Ra = Re if and only if R is
regular and is a Rickart ∗-ring (A Rickert ∗-ring is the ∗-ring in which the right
annihilator of every element is generated by a projection as a right ideal).

Following [4], A ring R is called strongly regular if for every element a of R
there exists at least one element x in R such that a = a2x. One can see that
every strongly regular is regular (see [8]).

Azumaya in [5], gave a compact definition of strong regularity for elements.
An element a of a ring R is called right (resp. left) regular if a ∈ a2R (resp.
a ∈ Ra2)). Moreover, a is strongly regular if it is both right and left regular.

2 ∗-Regular elements

In this section we introduce the definition of ∗−-regular elements which is
compatible with the definition of ∗-regular ∗-rings given by Berberian [6]; that
is a ∗-ring is ∗-regular if and only if all its elements are ∗-regular and every
∗-regular element is regular.

Definition 2.1 ([6]). A ∗-regular ∗-ring is a regular ∗-ring with proper invo-
lution.

Proposition 2.1 ([6], Proposition 3). For a ∗-ring R, the following condi-
tions are equivalent:

(a) R is ∗-regular.
(b) for each a ∈ R, there exists a projection e such that Ra = Re.

(c) R is regular and is a Rickart ∗-ring.
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Now, we introduce the definition of ∗-regular elements which has to be
compatible with the above definition.

Definition 2.2. An element a of a ∗-ring R is said to be ∗-regular if and only
if a ∈ aa∗R ∩Ra∗a.

All projections and invertible elements of a ∗-ring are ∗-regular.
Every ∗-regular element a of a ∗-ring R is clearly regular. Indeed, a ∈ aa∗R∩

Ra∗a implies a = aa∗x for some x ∈ R. Hence (x∗a)(x∗a)∗ = x∗aa∗x = x∗a
and so x∗a is a projection. Thus x∗a = a∗x and a = ax∗a ∈ aRa. However,
the converse is not necessary true as shown by the following example.

Example 2.3. Let e be a nonzero idempotent of an Abelian ring A. In the
∗-ring R = A

⊕
A, with the exchange involution ∗ defined as (a, b)∗ = (b, a),

the element (e, 0) is regular but not ∗-regular.

Proposition 2.2. The only ∗-regular ∗-nilpotent element of a ∗-ring R is 0.

Proof. Let a be a ∗-regular element of a ∗-ring R. Hence, a ∈ aa∗R and a ∈
Ra∗a. So that, a ∈ aa∗R ⊆ a(Ra∗a)∗R = aa∗aR ⊆ aa∗(aa∗R)R = (aa∗)2R.
Continuing this procedure, we get a ∈ (aa∗)nR for every positive integer n. If
a is ∗-nilpotent, then a = 0. �

Proposition 2.3. A nonzero element a of ∗-ring R is ∗-regular if and only if
there are two projections e, f and an element b of R such that ab = e, ba = f
and a = ea = af.

Proof. First, let a be a ∗-regular element of the ∗-ring R. Then a = aa∗x =
ya∗a for some x and y in R. Choose e = ya∗ to get ee∗ = ya∗ay∗ = ay∗ = e∗

which means that e is a projection and ea = a. Similarly, the choice f = a∗x
makes f a projection and af = a . Moreover e = ya∗ = ay∗ = (aa∗x)y∗ =
a(a∗xy∗) and f = x∗a = x∗ea = x∗ay∗a = (a∗xy∗)a. Choose b = a∗xy∗ to get
the result.

Conversely, let the condition be satisfied. Hence, a = ea = e∗a = (ab)∗a ∈
Ra∗a. Similarly, a = af = af∗ = a(ba)∗ ∈ aa∗R. Hence a ∈ aa∗R ∩Ra∗R and
a is ∗-regular. �

Proposition 2.4. Let R be a ∗-ring. Then the following conditions are equiv-
alent:

(i) R is ∗-regular.
(ii) a ∈ Ra∗a, for every a ∈ R.

(iii) a ∈ aa∗R, for every a ∈ R.

(iv) a ∈ aa∗R ∩ Ra∗a, for every a ∈ R.
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Proof. (i)⇒(ii): Let R be ∗-regular, then for every a ∈ R, aR = eR for some
projection e of R. Hence a = ea and e = ar for some r ∈ R. Thus a = e∗a =
r∗a∗a ∈ Ra∗a.

(ii)⇒(iii): Direct by applying the condition on the element a∗ ∈ R.
(iii)⇒(iv): Obvious.
(iv)⇒(i): From a ∈ aa∗R ∩ Ra∗a, we get a = ra∗a, for some r ∈ R. Hence

(ra∗)(ra∗)∗ = (ra∗a)r∗ = ar∗ = (ra∗)∗ and e = ra∗ is a projection. Finally,
e = ar∗ ∈ aR and a = ea ∈ eR imply aR = eR and R is ∗-regular. �

Corollary 2.4. A ∗-ring R is ∗-regular if and only if all its elements are
∗-regular.
Corollary 2.5. Every ∗-regular ∗-ring is ∗-reduced.
Corollary 2.6. Every ideal I of a ∗-regular ∗-ring R satisfies

I∗I = II∗ = I ∩ I∗ = I = I2

A ∗-regular element a of a ∗-subring S of a ∗-ring R is clearly ∗-regular in
R. The converse is not necessary true by the next example.

Example 2.7. Consider the ∗-ring of complex numbers C with conjugate as
involution and S be the set of Gaussian integers. Clearly, a = 1 + i ∈ S is
∗-regular in C since a = (1 + i)(1− i)(1

2 + 1
2 i) ∈ aa∗R∩Ra∗a and a can not be

∗-regular in S.

3 ∗-Regular Pairs

Definition 3.1. A pair (a, b) of elements of a ∗-ring R satisfying ab = e
and ba = f for some projections e and f of R such that a = ea = af and
b = be = fb, is called a ∗-regular pair and b is called the ∗-regular conjugate of
a and vice versa.

In the ∗-ring R, (0, 0) and (1, 1) are the improper ∗-regular pairs.

Proposition 3.1. If (a, b) is a ∗-regular pair, then both a and b are ∗-regular.
Proof. a = ea and e = ab imply a = ea = e∗a = b∗a∗a ∈ Ra∗a. Also a ∈ aa∗R
and a is ∗-regular. Similarly, its conjugate b is also ∗-regular. �

The converse of the previous proposition is not true as clear from the next
example which shows also that a ∗-ring which is not ∗-regular may contains
∗-regular elements.

Example 3.2. The ∗-ring R = M2(R) of all 2×2 real matrices with transpose

involution is not ∗-regular since α =
(

1 0
1 0

)
satisfies α �∈ Rα∗α. Moreover,
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the elements a =
(

4 0
3 0

)
and b =

(
4
25

3
25

0 0

)
form a ∗-regular pair with the

corresponding projections e =
(

16
25

12
25

12
25

9
25

)
and f =

(
1 0
0 0

)
. Furthermore,

the element β =
(

1 3
2 6

)
is ∗-regular and can not form a ∗-regular pair with

any element of R.

The next result claims the uniqueness of the ∗-regular conjugate.

Proposition 3.2. The ∗-regular conjugate is unique.

Proof. Assume that b and c are tow ∗-regular conjugates of a ∈ R. So that

ab = e, ba = f, a = ea = af, b = be = fb

and
ac = e′, ca = f ′, a = e′a = af ′, c = ce′ = f ′c,

for some projections e, f, e′ and f ′ of R. So that ab = e′ab = (ac)(ab) =
(ac)∗(ab)∗ = c∗a∗b∗a∗ = c∗(aba)∗ = c∗(ea)∗ = c∗a∗ = (ac)∗ = (e′)∗ = e′ = ac.
Similarly, ba = ca. Now,

b = fb = bab = bac = cac = f ′c = c

�

Now, we give a compact definition for ∗-regular pairs depends only on the
conjugate elements.

Proposition 3.3. A pair (a, b) of a ∗-ring R is ∗-regular if and only if a =
(ab)∗a = b∗a∗a and b = (ba)∗b = a∗b∗b.

Proof. Let (a, b) be a ∗-regular pair. Then a = ea = af , b = be = fb, ab = e
and ba = f for some projections e and f of R. Hence a = ea = e∗a = b∗a∗a
and b = fb = a∗b∗b. Conversely, assume that a = b∗a∗a and b = a∗b∗b. Let
e = ab, then e∗e = b∗a∗ab = ab = e implies e is a projection. Similarly, f = ba
is also a projection. Obviously, ea = e∗a = b∗a∗a = a. Similarly, a = af and
b = be = fb. Hence (a, b) is a ∗-regular pair. �

Note that the previous proposition is still valid if we interchange the first
element by the third one; that is a = aa∗b∗ and b = bb∗a∗.

The following corollary shows that each invertible element is the ∗-regular
conjugate of its inverse.

Corollary 3.3. If a is an invertible element in a ∗-ring R, then (a, a−1) is a
∗-regular pair.

Proposition 3.4. The following statements hold for a ∗-regular pair (a, b) of
a ∗-ring R.



126 Regularity of Rings with Involution

1. (−a,−b) is a pair ∗-regular.
2. (b, a) is a ∗-regular pair.

3. (a∗, b∗) is a ∗-regular pair.

Proof. The proof is direct. �

Proposition 3.5. The ∗-regular conjugate of a projection is also a projection.

Proof. Assume that (e, b) is a ∗-regular pair and e is a projection. Hence,
e = b∗e∗e = b∗e and b∗b = b∗(e∗b∗b) = eb∗b = e∗b∗b = b and b is a projection.
�

The next corollary shows that ∗-regular pair , as a relation, is reflexive only
for projections.

Corollary 3.4. In a ∗-ring R, (a, a) is ∗-regular pair if and only if a is a
projection, for every a ∈ R.

Corollary 3.5. Let e and f be projections of a ∗-ring R, then e = f if and
only if (e, f) is a ∗-regular pair.

Proposition 3.6. Let R be a ∗-Abelian ∗-ring and (a, b), (c, d) be two ∗-regular
pairs. Then (ac, db) is a ∗-regular pair.

Proof. (a, b) and (c, d) are ∗-regular pairs imply a = e1a = af1, b = be1 = f1b,
ab = e1, ba = f1,c = e2c = cf2, d = de2 = f2d, cd = e2 and dc = f2 for some
projections e1,e2, f1 and f2 of R. Now (ac)(db) = a(cd)b = ae2b = (ab)e2 =
e1e2 and similarly, (db)(ac) = f1f2. Since e1e2 and f1f2 are projections and
(e1e2)(ac) = (ac)(f1f2) = ac and (f1f2)(db) = (db)(e1e2) = db, then (ac, db) is
a ∗-regular pair. �

Now, if we define the mapping † : P(R) → P(R) which takes each element
in P(R) to its ∗-regular con1jugate, where P(R) is the set of all ∗-regular
conjugate elements, then we have the following:

1. † is bijective of order 2; that is (a†)† = a.

2. † is an odd mappping; that is (−a)† = −a†.

3. † commutes with ∗. that is (a†)∗ = (a∗)†.

We call this mapping a ∗-regular conjugate mapping, briefly ∗ − RC. The
following are additional properties for †.
Proposition 3.7. Let R be a ∗-ring, then

(i) aa† and a†a are projections.

(ii) aa†a = a
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(iii) a†aa† = a†

Proof. (i) From Proposition 3.3, we have a = (a†)∗a∗a and a† = a∗(a†)∗a†.
Hence (aa†)∗(aa†) = (a†)∗a∗aa† = aa† and so aa† is a projection. The second
part is proved similarly.

(ii) a = (a†)∗a∗a = (aa†)∗a = aa†a.
(iii) As in (ii). �

Example 3.6. Let R be ring of complex numbers with conjugate involution.

Define † as a† =
{

0, if a = 0
1
x

if a �= 0 . Clearly † is a ∗-RC mapping .

Proposition 3.8. If R is a ∗-Abelian ∗-ring, then P(R) is a †-semigroup with
zero.

Proof. From the property (a†)† = a and Proposition 3.6, we see that † is an
involution and P(R) is a semigroup with 0. �

4 Strongly ∗-regular ∗-ring

According to [5], an element a of a ring R is said to be right (resp. left)
regular if a ∈ a2R (resp. (a ∈ Ra2) and is called strongly regular if it is both
right and left regular. R is called strongly regular if every element is strongly
regular. For ∗-rings, the condition of strongly regularity will be only a ∈ a2R
(or a ∈ a2R). Here, we give the involutive version of strongly regularity; that
is strongly ∗-regularity.

Definition 4.1. An element a of a ∗-ring R is said to be strongly ∗-regular if
and only if a ∈ a∗Ra ∩ aRa∗ and R is strongly ∗-regular if every element of R
is strongly ∗-regular.

The zero and all invertible elements of ∗-rings are strongly ∗-regular. The
condition a ∈ a∗Ra ∩ aRa∗ in the previous definition can not be reduced to
a ∈ aRa∗ or a ∈ a∗Ra as clear from the following example.

Example 4.2. Consider the ∗-ring Mn(F ) of all n × n matrices over a field
F with the transpose involution. The element a = e11 + e12 is not strongly
∗-regular because a /∈ aRa∗ ∩ a∗Ra, while the element b = e11 + 2e12 + 3e21 is
non-invertible but strongly ∗-regular, where eij it the matrix with zero entries
everywhere and 1 in the ij-position. Moreover the element c = e11 +e21 + · · ·+
en1 satisfies c ∈ cRc∗ but c �∈ c∗Rc.

However, the condition of strongly ∗-regularity for elements is reduced for
strongly ∗-regular ∗-rings as obvious from the next result.

Proposition 4.1. For a ∗-ring R, the following conditions are equivalent:
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(i) R is strongly ∗-regular.
(ii) a ∈ aRa∗ for every a ∈ R.

(iii) a ∈ a∗Ra for every a ∈ R.

Proof. (i)⇒(ii) is direct.
(ii)⇒(iii): By assumption, a∗ ∈ a∗R(a∗)∗ = a∗Ra and consequently a ∈

a∗Ra.
(iii)⇒(i): As in (ii)⇒(iii). �

Lemma 4.3. Every idempotent in a strongly ∗-regular ∗-ring is projection.

Proof. Let e be an idempotent of a strongly ∗-regular ∗-ring R. Hence e = exe∗

for some x ∈ R implies ee∗ = (exe∗)e∗ = exe∗ = e and e is a projection. �

Proposition 4.2. Every strongly ∗-regular ∗-ring R is reduced.

Proof. If R is strongly ∗-regular, then for every 0 �= a ∈ R, a = a∗xa = aya∗ for
some x, y ∈ R. Now, a = a∗xa = (aya∗)∗xa = ay∗(a∗xa) = ay∗a. Set e = ay∗,
hence e2 = (ay∗)2 = (ay∗a)y∗ = ay∗ = e and so that e is an idempotent and
consequently a projection by the previous lemma. Hence ay∗ = ya∗ implies
a = a2y∗, so a can not be nilpotent and R is reduced. �

Since every reduced ring is Abelian, we have the following corollary.

Corollary 4.4. Every strongly ∗-regular ∗-ring is Abelian.

Proposition 4.3. Every one-sided principal ideal of a strongly ∗-regular ∗-ring
is self-adjoint and so is a ∗-ideal.
Proof. Let aR be a right principal ideal of R generated by a, hence a = axa∗

for some x ∈ R. As in the proof of Proposition 4.2 and Corollary 4.4, ax∗ is
central projection, hence (aR)∗ = Ra∗ = Rax∗a∗ = ax∗Ra∗ ⊆ aR. Thus aR is
self-adjoint and consequently two-sided ideal. �

Next, we give a compact equivalent definition for strongly ∗-regular ∗-rings.

Proposition 4.4. A ∗-ring R is strongly ∗-regular if and only if for every
a ∈ R there is a central projection e of R such that aR = eR.

Proof. For sufficiency, let aR = eR for some central projection e of R. Hence,
a = ea and e = ax for some x in R, so that e = x∗a∗ implies a = ea = ae =
ax∗a∗ ∈ aRa∗. Similarly, a ∈ a∗Ra. Thus a ∈ a∗Ra∩aRa∗ and a is strongly ∗-
regular. Conversely, if R is strongly ∗-regular, then for every a ∈ R, a = a∗xa =
aya∗ for some x, y ∈ R. Now, a = a∗xa = (aya∗)∗xa = ay∗(a∗xa) = ay∗a.
Setting e = ya∗, we have e2 = ya∗ya∗ = y(aya∗)∗ = ya∗ = e which implies
that e is an idempotent and hence is central projection by Lemma 4.3 and
Corollary 4.4. �

The next two propositions shows that every strongly ∗-regular ∗-ring is both
∗-regular and strongly regular.
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Proposition 4.5. Every strongly ∗-regular ∗-ring is ∗-regular.
Proof. Let R be a strongly ∗-regular. For each a in R, a ∈ a∗Ra ∩ aRa∗

implies a = a∗xa = aya∗ for some x, y ∈ R. Hence, a = a∗xa = (aya∗)∗xa =
ay∗(a∗xa) = ay∗a ∈ aRa and so R is regular. According to [10, Theorem
4.5], it is enough to show that ∗ is proper to prove that R is ∗-regular. Now,
a = ay∗a implies (y∗a)2 = y∗ay∗a = y∗a and so y∗a is an idempotent and
consequently a projection, by Lemma 4.3. Hence y∗a = (y∗a)∗ = a∗y and so
a = aa∗y implies ∗ is proper. �

The converse of the previous proposition is not necessary true as clear from
the next example.

Example 4.5. In the ring R = Mn(R) of all n×n real matrices, if r is the rank
of a ∈ R, then there exist invertible matrices x and y such that xay = α, where

α =
(

Ir 0
0 0

)
. Hence a = x−1αy−1 = x−1α2y−1 = x−1α(y−1yxx−1)αy−1 =

(x−1αy−1)yx(x−1αy−1) = ayxa ∈ aRa and R is regular . If the involution
∗ on R is the transpose, then it is proper and R is ∗-regular from Definition
1. On the other hand R is not strongly ∗-regular, by Corollary 4.4, since the
projections eii ∈ R, i = 1, · · ·n, are all non-central.

Proposition 4.6. Every strongly ∗-regular ∗-ring is strongly regular.

Proof. Let R be a strongly ∗-regular ∗-ring and a ∈ R, hence a = axa∗ = a∗ya
for some x, y ∈ R. As in the proof of Proposition 4.5, a = aa∗y and since
a∗ = ax∗a∗, we get a = a2x∗a∗y which gives a ∈ a2R and so R is strongly
regular. �

However, there is a strongly regular ∗-ring which is not strongly ∗-regular.

Example 4.6. The ∗-ring R = S ⊕ S, where S is a strongly regular ring, with
the exchange involution is strongly regular but not strongly ∗-regular.

Next, we give sufficient conditions for strongly regular ∗-rings and ∗-regular
∗-rings to be strongly ∗-regular.

Proposition 4.7. For a ∗-ring R, the following conditions are equivalent:

(i) R is strongly ∗-regular.
(ii) R is ∗-regular and reduced.

(iii) R is ∗-regular and Abelian.

(iv) R is ∗-regular and ∗-Abelian.

Proof. (i)⇒(ii) from Propositions 4.5 and 4.2.
(ii)⇒(iii)⇒(iv) are clear.
(iv)⇒(i): For every a ∈ R we have a = aa∗x = ya∗a. But a∗x and ya∗ are

projections and hence central, from the assumption. Hence a = a∗xa = aya∗

and R is strongly ∗-regular. �
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Proposition 4.8. A ∗-ring R is strongly ∗-regular if and only if R is strongly
regular and ∗ is proper.

Proof. For necessity, R is strongly regular from Proposition 4.6. For any 0 �=
a ∈ R, a ∈ a∗Ra and (a∗Ra)2 = a∗Raa∗Ra �= 0, from the reduceness of R
(Proposition 4.2) and so ∗ is proper.

Conversely, let R be strongly regular and ∗ be proper. According to [7][Theorems
3.2 and 3.5], every strongly regular ring is reduced and in particular Abelian.
Now, to show that every idempotent is projection, let e be an idempotent of
R, hence (e − ee∗)(e − ee∗)∗ = 0 which implies e = ee∗. Next, let a ∈ R which
implies a = a2x = ya2 for some x, y ∈ R. Obviously ax is an idempotent, since
(ax)2 = axax = ya2xax = ya2x = ax, and therefore is a central projection.
Hence a = a2x = a(ax)∗ = ax∗a∗ ∈ aRa∗ and similarly a ∈ a∗Ra. Thus R is
strongly ∗-regular. �

Proposition 4.9. If R is ∗-central reduced and strongly ∗-regular, then R is a
division ∗-ring.

Proof. For every 0 �= a ∈ R, we have a = aya∗ and as in a previous proof,
ay∗ is a central projection. Since R is ∗-central reduced, either ay∗ = 0 which
implies a = aya∗ = a(ay∗)∗ = 0, contradicts our assumption, or ay∗ = 1 and a
is invertible. �

Proposition 4.10. A strongly ∗-regular ∗-ring R is ∗-central reduced if and
only if its center is ∗-field.

Proof. First, if R is ∗-central reduced and strongly ∗-regular, then R is a divi-
sion ring by Proposition 4.9 and consequently its center is a ∗-field. Conversely,
let e be a central projection, hence e(1 − e) = 0. If e = 0, then it is done. If
not, e−1 ∈ R and then 1− e = 0 implies e = 1. Thus R is central ∗-reduced. �

5 Extending Strong Regularity

Lemma 5.1. Every ∗-homomorphic image of strongly ∗-regular ∗-ring is strongly
∗-regular.
Proof. The proof is routine. �

Proposition 5.1. Let I be a ∗-ideal of a ∗-ring R. Then R is strongly ∗-regular
if and only if I and R/I are strongly ∗-regular.
Proof. First, let R be strongly ∗-regular and a ∈ I, hence a = axa∗ = a∗ya
for some x, y ∈ R. As done in previous proofs, ax is a central projection and
a = ax∗a. The element z = xax∗ is in I which satisfies aza∗ = axax∗a∗ =
ax∗axa∗ = ax∗a = a shows that I is strongly ∗-regular. By Lemma 5.1,
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R/I is strongly ∗-regular. Conversely, let I and R/I be strongly ∗-regular,
then for a ∈ R, we have a + I = (a + I)(x + I)(a + I)∗ = axa∗ + I for
some x ∈ R. Hence a − axa∗ ∈ I and since I is strongly ∗-regular, we get
a−axa∗ = (a−axa∗)z(a−axa∗)∗ = aza∗−axa∗za−azax∗a∗+axa∗zax∗a∗ =
aza∗ − axa∗za− azax∗a∗ + axa∗zax∗a∗, for some z ∈ I. Again a∗za = a∗z∗a∗

and a−axa∗ = aza∗−axa∗z∗a∗−azax∗a∗ +axa∗zax∗a∗. Hence a = a(x+z−
xa∗z∗ − zax∗ + xa∗zax∗)a∗ ∈ aRa∗ which implies that R is strongly ∗-regular.
�

Proposition 5.2. A finite direct sum of strongly ∗-regular ∗-rings is strongly
∗-regular (under componentwise involution).

Proof. It is enough to prove the result in case of two strongly ∗-regular ∗-
rings A and B, that is R = A ⊕ B. Since A and R/A = (A + B)/A ∼=
B/(A∩B) are strongly ∗-regular, by Lemma 5.1, then R is strongly ∗-regular,
by Proposition 5.1. �

Proposition 5.3. Every ∗-corner of strongly ∗-regular ∗-ring is strongly ∗-
regular.

Proof. Let R be a strongly ∗−regular ∗-ring and e ∈ R is a projection. For every
a ∈ eRe, there exists y ∈ R such that a = aya∗ = (ae)y(ae)∗ = a(eye)a∗ ∈
a(eRe)a∗ and eRe is strongly ∗-regular. �

We note that the converse of the previous proposition is not true even if
all the non-trivial ∗-corners of R are strongly ∗-regular as clear from the next
example.

Example 5.2. Let R = M2(R) be the ring of all 2 × 2 matrices over the real
numbers R with transpose involution. The nontrivial projections of R are e11 =
and e22 which satisfy e11Re11 = e22Re22 = R and these are strongly ∗-regular
while R is not.

Proposition 5.4. The center of a strongly ∗-regular ∗-ring is strongly ∗-
regular.

Proof. Let R be a strongly ∗-regular with center Z and let a ∈ Z. Using Propo-
sition 4.4, it is enough to show that aZ is generated by a central projection of
R. Since R is strongly ∗-regular, then aR = eR for some central projection e
of R. Since a = ea, we have aZ ⊆ eZ. Moreover, there is r ∈ R such that e =
ar = aer. For every s ∈ R, we have (er)s = rse = rsar = arsr = esr = s(er),
whence er ∈ Z and eZ ⊆ aZ. Therefore, aZ = eZ and Z is strongly ∗-regular.
�

The converse of the previous proposition is not true. The ∗-ring in Exam-
ple 5.2 is not strongly ∗-regular while its center is strongly ∗-regular.

The next proposition gives a sufficient and necessary condition for a ∗-ring
with strongly ∗-regular center to be strongly ∗-regular, too.
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Proposition 5.5. A ∗-ring R is strongly ∗-regular if and only if its center
Z(R) is strongly ∗-regular and R is strongly regular.

Proof. Obviously, if R is strongly ∗-regular, then the center is strongly ∗-regular
by Proposition 5.4 and R is strongly regular from Proposition 4.6. Conversely,
let a ∈ R, then aR = eR for some central idempotent e of R, because R
is strongly regular. Since e ∈ Z(R), which is strongly ∗-regular, then e is a
projection form Lemma 4.3 and R is strongly ∗-regular. �

References
[1] Usama A. Aburawash, On involution rings, East-West J. Math., 2(2), 109-126, 2002.

[2] Usama A. Aburawash,∗-zero divisors and ∗-prime ideals, East-West J. Math. , 12(1),
27-31, 2010.

[3] Usama A. Aburawash and Muhammad Saad, ∗-Baer property for rings with involution,
Studia Sci. Math. Hung., page 243-255, 2016.

[4] Richard F. Arens and Irving Kaplansky, Topological representation of algebras, T. Am.
Math. Soc., 63(3), 457-481, 1948.
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