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Abstract

In this paper, we remark that a class of quasi-variational inequality
for the Maxwell type equation in a multiply-connected domain with holes
has a solution . Our class contains, so called, p-curlcurl operator. The
existence of solution heavily depends on the geometry of the domain and
the boundary conditions. We consider the quasi-variational inequality
with a tangent free boundary condition.

1 Introduction

Generalized Maxwell’s equations in electromagnetic field in equilibrium written
by ⎧⎪⎪⎨

⎪⎪⎩
j = curl h,
curl e = f ,
εdiv e = q,
div h = 0

(1.1)

in Ω, where Ω is a bounded domain in R
3 with a boundary Γ, e and h denote

the electric and the magnetic fields, respectively, ε is the permittivity of the
electric field, σ is the electric conductivity of the material, j is the total current
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density and q is the density of electric charge. We use the nonlinear extension
of Ohm’s law |j|p−2j = σe. Then h satisfies the following equations{

curl [ 1
σ
|curl h|p−2curl h] = f ,

div h = 0 (1.2)

in Ω. Mathematically the left-hand side of (1.2) is, so called, p-curlcurl opera-
tor. We impose the natural boundary condition

h × n = 0 on Γ, (1.3)

where n denotes the outer normal unit vector field to Γ. Putting ν = 1/σ, we
must consider the following system.⎧⎨

⎩
curl [ν |curlh|p−2curl h] = f in Ω,
div h = 0 in Ω,
h × n = 0, on Γ.

(1.4)

In the case where Ω is a bounded simply-connected domain without holes, and
p > 2, Yin et al. [11] obtained the existence theorem of a weak solution of
(1.2) with (1.3). Miranda et al [9] considered the case the boundary condition
h ·n = 0 on Γ, in the simply-connected domain without holes.

The above generalization of the Ohm law arises in type-II superconductors
and is known as an extension of the Bean critical-state model, in which |curl h|
cannot exceed some given critical value j > 0. In the present paper, we consider
the case where this threshold j varies with the absolute value |h| of the magnetic
field h. That is to say,

e =
{
ν |curlh|p−2curl h if |curl h| < j(|h|),
ν(jp−2 + λ)curl h if |curl h| = j(|h|),

where λ = λ(x) ≥ 0 is an unknown Lagrange multiplier and has support in the
superconductivity region

S = {x ∈ Ω; |curlh(x)| = j(|h(x)|}.
This fact leads to a following quasi-variational inequality.∫

Ω

ν |curlh|p−2curl h · curl (v − h)dx ≥
∫

Ω

f · (v − h)dx (1.5)

for all v in an appropriate space such that |curl v| ≤ j(|h|) a.e. in Ω.
When Ω is multiply-connected and has holes, it is insufficient to show the

existence of solution to the system (1.5) under only the boundary condition
(1.3). To do so, in addition to (1.3), we impose that

〈h ·n, 1〉Γi = 0 for i = 1, . . . , I,
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where Γi (i = 0, 1, . . . , I) are connected components of the boundary Γ, Γ0

denoting the boundary of the infinite connected component of R
3 \ Ω and

〈·, ·〉Γi is a duality bracket.
In this paper, taking a generalization into consideration, we consider the

following quasi-variational inequality: to find h ∈ Kh such that∫
Ω

St(x, |curlh|2)curl h · curl (v − h)dx ≥ 〈f , v − h〉Ω (1.6)

for all v ∈ Kh. Here a function S(x, t) satisfies some structural conditions and
Kh is a convex subset satisfying a constrained condition, and 〈·, ·〉Ω denotes
some duality bracket. All the definitions of the spaces and the properties are
stated in details in section 2.

The paper is organized as follows. Section 2 consists of two subsections. In
subsection 2.1, since we allow that the domain Ω ⊂ R

3 is multiply-connected
and has holes, we define the geometry of the domain and a basic space of
functions. In subsection 2.2, we give the main theorem (Theorem 2.4). In
section 3, we consider the associated variational problem for which we show
the existence of a unique solution and an estimate of the solution. In section
4, we give a proof of the main theorem (Theorem 2.4).

2 Preliminaries and the main theorem

This section consists of two subsections. In subsection 2.1, we give a Carathéodory
function S(x, t) on Ω×[0,+∞) satisfying some structural conditions, and intro-
duce some spaces of functions. In subsection 2.2, we state the main theorem.

2.1 Preliminaries

Let Ω be a bounded domain in R
3 with a C1,1 boundary Γ. Since we allow Ω to

be a multiply-connected domain with holes in R
3, we assume that Ω satisfies

the following conditions as in Amrouche and Seloula [2] (cf. Amrouche and
Seloula [1], Dautray and Lions [5, vol. 3] and Girault and Raviart [8]). Ω is
locally situated on one side of Γ and satisfies the following (O1) and (O2).

(O1) Γ has a finite number of connected components Γ0,Γ1, . . . ,ΓI with Γ0

denoting the boundary of the infinite connected component of R
3 \ Ω.

(O2) There exist J connected open surfaces Σj, (j = 1, . . . , J), called cuts,
contained in Ω such that

(a) each surface Σj is an open subset of a smooth manifold Mj,

(b) ∂Σj ⊂ Γ (j = 1, . . . , J), where ∂Σj denotes the boundary of Σj , and
Σj is non-tangential to Γ,



144 A remark on a quasi-variational inequality...

(c) Σj ∩Σk = ∅ (j �= k),
(d) the open set Ω◦ = Ω \ (∪Jj=1Σj) is simply connected and has a

pseudo-C1,1 boundary.

The number J is called the first Betti number and I the second Betti number.
We say that Ω is simply connected if J = 0 and Ω has no holes if I = 0. If we
define

K
p
T (Ω) = {v ∈ W 1,p(Ω); curl v = 0, div v = 0 in Ω, v · n = 0 on Γ}

and

K
p
N(Ω) = {v ∈ W 1,p(Ω); curl v = 0, div v = 0 in Ω, v × n = 0 on Γ},

then it is well known that dimK
p
T (Ω) = J and dimK

p
N (Ω) = I.

Throughout this paper, let 1 < p < ∞ and we denote the conjugate expo-
nent of p by p′, i.e., (1/p) + (1/p′) = 1. From now on we use Lp(Ω), W 1,p

0 (Ω)
and W 1,p(Ω) for the standard Lp and Sobolev spaces of functions. For any
Banach space B, we denote B×B×B by boldface character B. Hereafter, we
use this character to denote vector and vector-valued functions, and we denote
the standard Euclidean inner product of vectors a and b in R

3 by a · b. For
the dual space B′ of B, we write 〈·, ·〉B′,B for the duality bracket.

We assume that a Carathéodory function S(x, t) in Ω × [0,∞) satisfies
the following structural conditions. For a.e. x ∈ Ω, S(x, t) ∈ C2((0,∞)) ∩
C0([0,∞)), and positive constants 0 < λ ≤ Λ <∞ such that for a.e. x ∈ Ω,

S(x, 0) = 0 and λt(p−2)/2 ≤ St(x, t) ≤ Λt(p−2)/2 for t > 0, (2.1a)
λt(p−2)/2 ≤ St(x, t) + 2tStt(x, t) ≤ Λt(p−2)/2 for t > 0, (2.1b)

If 1 < p < 2, Stt(x, t) < 0, and if p ≥ 2, Stt(x, t) ≥ 0 for t > 0, (2.1c)

where St = ∂S/∂t and Stt = ∂2S/∂t2. We note that from (2.1a), we have

2
p
λtp/2 ≤ S(x, t) ≤ 2

p
Λtp/2 for t ≥ 0. (2.2)

Example 2.1. If S(x, t) = ν(x)g(t)tp/2, where ν is a measurable function in Ω
and satisfies 0 < ν∗ ≤ ν(x) ≤ ν∗ <∞ for a.e. x ∈ Ω for some constants ν∗ and
ν∗, and g ∈ C∞([0,∞)),

When g(t) ≡ 1, it follows from elementary calculations that (2.1a)-(2.1c)
hold.

As an another example, we can take

g(t) =
{
a(e−1/t + 1) if t > 0,
a if t = 0

with a constant a > 0. Then S(x, t) = ν(x)g(t)tp/2 satisfies (2.1a)-(2.1c) if
p ≥ 2. (cf. Aramaki [4, Example 3.2]).
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We give a monotonic property of St.

Lemma 2.2. There exists a constant c > 0 such that for all a, b ∈ R
3,

(
St(x, |a|2)a − St(x, |b|2)b

) · (a − b)

≥
{
c|a − b|p if p ≥ 2,
c(|a|+ |b|)p−2|a − b|2 if 1 < p < 2.

In particular, if a �= b, we have(
St(x, |a|2)a − St(x, |b|2)b

) · (a − b) > 0.

For the proof, see Aramaki [3, Lemma 3.6].
We can see that the convexity of S(x, t) in the following sense.

Lemma 2.3. If S(x, t) satisfies (2.1a) and (2.1b), then for a.e. x ∈ Ω, the
function R � t �→ g[t] = S(x, t2) is strictly convex.

For the proof, see [4, Lemma 2.3].
The following inequality is used frequently (cf. [2]). If Ω is a bounded

domain in R
3 with a C1,1 boundary Γ, and if u ∈ Lp(Ω) satisfies curl u ∈

Lp(Ω), div u ∈ Lp(Ω) and u × n ∈ W 1−1/p,p(Γ), then u ∈ W 1,p(Ω) and there
exists a constant C > 0 depending only on p and Ω such that

‖u‖W 1,p(Ω) ≤ C(‖curl u‖Lp(Ω) + ‖div u‖Lp(Ω) + ‖u‖Lp(Ω)

+ ‖u × n‖W1−1/p,p(Γ)). (2.3)

Moreover, if u ∈ Lp(Ω) satisfies curl u ∈ Lp(Ω), then u × n ∈ W−1/p,p(Γ) is
well defined, and if u ∈ Lp(Ω) satisfies div u ∈ Lp(Ω), then u ·n ∈W−1/p,p(Γ)
is well defined by

〈u × n,φ〉W −1/p,p(Γ),W 1−1/p′ ,p′
(Γ) =

∫
Ω

u · curl φdx−
∫

Ω

curl u · φdx

for all φ ∈ W 1,p′(Ω) and

〈u ·n, φ〉W−1/p,p(Γ),W1−1/p′ ,p′(Γ) =
∫

Ω

u · ∇φdx+
∫

Ω

(div u)φdx

for all φ ∈ W 1,p′(Ω). Furthermore, if u ∈ W 1,p(Ω) satisfies u × n = 0 on Γ,
then there exists a constant C > 0 depending only on p and Ω such that

‖u‖Lp(Ω) ≤ C(‖curl u‖Lp(Ω) + ‖div u‖Lp(Ω) +
I∑
i=1

|〈u · n, 1〉Γi|

where 〈·, ·〉Γi = 〈·, ·〉W−1/p,p(Γi),W1−1/p′ ,p′(Γi)
.
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Define a space

V
p
N (Ω) = {v ∈ Lp(Ω); curl u ∈ Lp(Ω), div v = 0 in Ω,u × n = 0 on Γ,

〈u · n, 1〉Γi = 0 for i = 1, . . . , I}.

with the norm
‖v‖V

p
N(Ω) = ‖curl u‖Lp(Ω).

We note that ‖v‖V
p
N (Ω) is equivalent to ‖v‖W 1,p(Ω) for v ∈ V

p
N (Ω) (cf. [2]).

Since V
p
N (Ω) is a closed subspace of W 1,p(Ω), we can see that V

p
N(Ω) is a

reflexive Banach space.

2.2 The main theorem

Let F : [0,∞) → R be a given continuous function such that there exists a
constant ν > 0 such that

F (s) ≥ ν for all s ≥ 0 (2.4)

and for any h ∈ V
p
N(Ω), define a closed convex subset

Kh = {v ∈ V
p
N (Ω); |curlv| ≤ F (|h|) a.e. in Ω}. (2.5)

For given f ∈ V
p
N (Ω)′, we consider the following quasi-variational inequality:

to find h ∈ Kh such that∫
Ω

St(x, |curlh|2)curl h · curl (v − h)dx ≥ 〈f , v − h〉Vp
N (Ω)′,Vp

N(Ω) (2.6)

for all v ∈ Kh.
We are in a position to state the main theorem.

Theorem 2.4. Let Ω be a bounded domain in R
3 with a C1,1 boundary Γ

satisfying (O1) and (O2), and assume that a Carathéodory function S(x, t)
satisfies the structural conditions (2.1a)-(2.1c), and a function F : [0,∞) → R

satisfies (2.4), and if 1 < p ≤ 3,

F (s) ≤ c0 + c1s
α, (2.7)

where α ≥ 0 if p = 3 and 0 ≤ α < p/(3 − p) if 1 < p < 3. Then for any
f ∈ V

p
N(Ω)′, the quasi-variational inequality (2.6) has a solution h ∈ Kh and

there exists a constant C > 0 such that

‖h‖p
V

p
N(Ω)

≤ C‖f‖p′
V

p
N(Ω)′ . (2.8)



Junichi Aramaki 147

3 Associate variational inequality

In this section we consider an associate variational inequality. For any given
function ϕ ∈ L∞(Ω), we define

Kϕ = {v ∈ V
p
N(Ω); |curl v| ≤ F (|ϕ|) for a.e. in Ω}.

We consider the following variational inequality: to find h ∈ Kϕ such that

∫
Ω

St(x, |curlh|2)curl h · curl (v − h)dx

≥ 〈f , v − h〉Vp
N (Ω)′,Vp

N (Ω) for all v ∈ Kϕ. (3.1)

We prove the following proposition.

Proposition 3.1. Let ϕ ∈ L∞(Ω) and f ∈ V
p
N(Ω)′. Then the variational in-

equality (3.1) has a unique solution h ∈ Kϕ and there exists a constant de-
pending only on λ and p such that

‖h‖p
V

p
N(Ω)

≤ C‖f‖p′
V

p
N(Ω)′ . (3.2)

Proof. Define a functional on Kϕ by

E[v] =
1
2

∫
Ω

S(x, |curl v|2)dx− 〈f , v〉Vp
N (Ω)′,Vp

N(Ω). (3.3)

We derive the following minimization problem: to find h ∈ Kϕ such that

E[h] = inf
v∈Kϕ

E[v]. (3.4)

We call such a function h a minimizer of (3.4).
Lemma 3.2. The minimization problem (3.4) has a unique minimizer h ∈ Kϕ.

Proof. We remember that the space Kϕ is a closed convex subset of V
p
N(Ω).

The functional E is proper, strictly convex functional from Lemma 2.3 (cf. [4]).
We show that E is coercive on Kϕ. Using the Young inequality,

E[v] ≥ λ

p
‖curl v‖pLp(Ω) − ‖f‖V

p
N (Ω)′‖v‖V

p
N(Ω)

≥ λ

p
‖v‖p

V
p
N(Ω)

− C(ε)‖f‖p′
V

p
N(Ω)′ − ε‖v‖p

V
p
N (Ω)

for any ε > 0 and for some constant C(ε). We choose ε = λ/(2p), we have

E[v] ≥ λ

2p
‖v‖p

V
p
N(Ω)

− C
( λ
2p

)‖f‖p′
V

p
N(Ω)′ .
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Hence E is coercive on Kϕ. Finally, we show that E is lower semi-continuous.
Let vn, v ∈ Kϕ and vn → v in V

p
N (Ω). Then curl vn → curl v strongly in

Lp(Ω). According to Aramaki [3], we have∫
Ω

S(x, |curl v|2)dx ≤ lim inf
n→∞

∫
Ω

S(x, |curl vn|2)dx.

This implies that E is lower semi-continuous. By Ekeland and Témam [6,
Chapter II, Proposition 1.2], the minimization problem (3.4) has a unique min-
imizer h ∈ Kϕ. �

Let h ∈ Kϕ be the minimizer of (3.4). For any v ∈ Kϕ, (1 − μ)h + μv =
h + μ(v − h) ∈ Kϕ for 0 < μ < 1. Thus E[h] ≤ E[h + μ(v − h)]. Hence

d

dμ
E[h + μ(v − h)]

∣∣∣∣
μ=+0

≥ 0.

That is,∫
Ω

St(x, |curlh|2)curl h · curl (v − h)dx ≥ 〈f , v − h〉Vp
N (Ω)′,Vp

N(Ω)

for all v ∈ Kϕ, so h is a solution of the variational inequality (3.1).
We show the uniqueness of solution. Let h1,h2 ∈ Kϕ be two solutions of

(3.1). Then we have∫
Ω

St(x, |curlh1|2)curl h1 · curl (h2 − h1)dx ≥ 〈f ,h2 − h1〉Vp
N (Ω)′,Vp

N (Ω)

and ∫
Ω

St(x, |curlh2|2)curl h2 · curl (h1 − h2)dx ≥ 〈f , v − h〉Vp
N(Ω)′,Vp

N (Ω).

Therefore, we have∫
Ω

(
St(x, |curlh1|2)curl h1 − St(x, |curlh2|2)curl h2

)
· curl (h1 − h2)dx ≤ 0.

Using Lemma 2.2, we have∫
Ω

|curl (h1 − h2)|pdx = 0,

if p ≥ 2 and ∫
Ω

(|curl h1|+ |curl h2|)p−2curl (h1 − h2)|2dx = 0,
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if 1 < p < 2. Hence we have h1 = h2 in V
p
N (Ω) in each case.

Finally we show the estimate (3.2). If we take v = 0 as a test function of
(3.1), then we have∫

Ω

St(x, |curlh|2)curl h · curl hdx ≤ 〈f ,h〉Vp
N (Ω)′,Vp

N(Ω).

By the structural condition (2.1a), we can see that

λ‖curl h‖Lp(Ω) ≤ ‖f‖V
p
N(Ω)′‖h‖V

p
N (Ω).

This implies the estimate (3.2). This completes the proof of Lemma 3.2. �

We show that the solution of (3.1) is continuously depending on ϕ ∈ L∞(Ω).

Lemma 3.3. Assume that ϕn, ϕ ∈ L∞(Ω) and ϕn → ϕ in L∞(Ω) as n → ∞,
and let hn ∈ Kϕn and h ∈ Kϕ be solutions of (3.1), respectively. Then hn → h
in V

p
N (Ω) as n→ ∞.

Proof. First we prove that Lim Kϕn = Kϕ in the sense of Mosco (cf. [10]). In
order to do so, we must first show that if vn ∈ Kϕn and vn → v in V

p
N(Ω),

then v ∈ Kϕ. In fact, since |curl vn| ≤ F (|ϕn|) a.e. in Ω, for any measurable
subset ω ⊂ Ω,∫

ω

|curl v|dx ≤ lim inf
n→∞

∫
ω

|curl vn|dx ≤ lim inf
n→∞

∫
ω

F (|ϕn|)dx =
∫
ω

F (|ϕ|)dx.

Hence |curl v| ≤ F (|ϕ|). a.e. in Ω, so v ∈ Kϕ.
Next we must show that for any v ∈ Kϕ, there exists vn ∈ Kϕn such that

vn → v in V
p
N (Ω) as n→ ∞. Indeed, put

λn = ‖F (|ϕn|)− F (|ϕ|)‖L∞(Ω).

Then λn → 0 as n → ∞ by the hypothesis. Define

vn =
1
μn

v with μn = 1 +
λn
ν
,

where ν is a constant of (2.4). Then vn ∈ V
p
N (Ω) and

|curlvn| ≤ 1
μn

|curl v| ≤ 1
μn
F (|ϕ|).

Since

μn = 1 +
‖F (|ϕn|) − F (|ϕ|)‖L∞(Ω)

ν
≥ 1 +

F (|ϕ|) − F (|ϕn|)
F (|ϕn|) ,
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we have |curlvn| ≤ F (|ϕn|), so vn ∈ Kϕn . Since μn → 1 as n→ ∞, we have

‖vn − v‖p
V

p
N (Ω)

=
∫

Ω

|curl (vn − v)|pdx =
(

1 − 1
μn

)p ∫
Ω

|curl v|pdx→ 0

as n → ∞. Thus Kϕ = s -LimKϕn in the sense of Mosco. By the well known
result of Mosco (cf. [10]), we can see that hn → h in V

p
N (Ω). �

4 Proof of Theorem 2.4

To prove Theorem 2.4, we use a fixed point argument. For any ϕ ∈ C(Ω),
we denote the unique solution of the variational inequality (3.1) by hϕ ∈ Kϕ.
Define an operator S : C(Ω) � ϕ �→ hϕ ∈ V

p
N(Ω). From Lemma 3.3, S

is continuous. When p > 3, it follows from Kondrachov theorem that the
embedding mapping V

p
N (Ω) ↪→ C(Ω) is compact. In particular, there exists a

constant C1 > 0 independent of ϕ such that

‖ϕ‖C(Ω) ≤ C1‖hϕ‖V
p
N(Ω).

Therefore, the following nonlinear mapping

S̃ : C(Ω) → V
p
N(Ω) ↪→ C(Ω) → C(Ω)

ϕ �→ hϕ �→ hϕ �→ |hϕ|
is continuous and compact. On the other hand, since it follows from Proposition
3.1 that we have

‖ϕ‖C(Ω) ≤ C1‖hϕ‖V
p
N(Ω) ≤ C2‖f‖p

′−1
V

p
N (Ω)′ = C3 (4.1)

where C3 is a constant independent of ϕ. Hence there exists R > 0 such that
S̃(C(Ω)) ⊂ DR, where

DR = {ϕ ∈ C(Ω); ‖ϕ‖C(Ω) ≤ R}.

Thus since S̃ : DR → DR is continuous and compact, it follows from the
Schauder fixed point theorem that S̃ has a fixed point ϕ in DR, that is, ϕ =
|hϕ|. Thus hϕ ∈ Kϕ.

When 1 < p ≤ 3, we apply the Leray-Schauder fixed point theorem. (cf.
Gilbarg and Trudinger [7, Theorem 11.3]). For any ϕ ∈ C(Ω), the solution hϕ
of (3.1) belongs to V

r
N (Ω) for any r > 3, because |curl hϕ| ≤ F (|ϕ|) ≤ C. Since

‖hϕ − hψ‖rVr
N (Ω) =

∫
Ω

|curl (hϕ − hψ)|rdx

=
∫

Ω

|curlhϕ − curl hψ|r−p|curl (hϕ − hψ|pdx

≤ 2r−p−1

∫
Ω

(F (|ϕ|)r−p + F (|ψ|)r−p)|curl (hϕ − hψ)|pdx.
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Thus
S̃ : C(Ω) → V

r
N(Ω) ↪→ C(Ω) → C(Ω)

ϕ �→ hϕ �→ hϕ �→ |hϕ|
is continuous and compact. We put

A = {ϕ ∈ C(Ω);ϕ = λS̃(ϕ) for some λ ∈ [0, 1]}.

Let ϕ ∈ A, that is, ϕ = λ|hϕ|. Then we have

‖ϕ‖r
C(Ω)

≤ ‖|hϕ|‖rC(Ω)
≤ C

∫
Ω

|curl hϕ|rdx

≤
∫

Ω

F (|ϕ|)rdx ≤
∫

Ω

(c0 + c1|ϕ|α)rdx ≤ c̃0 + c̃1λ
αr

∫
Ω

|hϕ|rαdx.

From the hypotheses of the Theorem, there exists r > 3 such that rα ≤ 3p/(3−
p). Therefore, it follows from Sobolev embedding theorem: W 1,p(Ω) ↪→ Lrα(Ω)
that we have∫

Ω

|hϕ|rαdx ≤ C‖hϕ‖rαW 1,p(Ω) ≤ C1‖hϕ‖rαVp
N(Ω) ≤ C3.

Thus we have
‖ϕ‖r

C(Ω)
≤ C4.

Hence S̃ has a fixed point in C(Ω). This completes the proof of Theorem 2.4.
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