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Abstract

In this paper, we consider a mixed boundary value problem to a p(x)-
Laplacian equation. More precisely we consider the problem with the
Dirichlet condition on a part of the boundary and the Steklov boundary
condition on an another part of the boundary. We show the existence
of at least two nontrivial weak solutions under some hypotheses on the
data and parameters.

1 Introduction

In this paper, we consider the following problem⎧⎨⎩
−div [St(x, |∇u|2)∇u] + a(x)|u|p(x)−2u = λf(x, u) in Ω,
u = 0 on Γ1,

St(x, |∇u|2) ∂u
∂n = μg(x, u) on Γ2,

(1.1)

Key words: p(x)-Laplacian type equation, variational methods, mountain pass theorem,
mixed boundary value problem.
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where Ω ⊂ R
N (N ≥ 2) is a bounded domain with a C0,1-boundary Γ, S(x, t)

is a Carathéodory function satisfying some structure conditions, a(x) is a mea-
surable function on Ω satisfying

0 < a∗ ≤ a(x) ≤ a∗ < ∞ for a.e x ∈ Ω, (1.2)

Γ1 and Γ2 are disjoint open subsets of Γ such that

Γ1 ∪ Γ2 = Γ and Γ1 �= ∅, (1.3)

and n denotes the unit, outer, normal vector to Γ. Thus we impose the
mixed boundary conditions, that is, the Dirichlet condition on Γ1 and the
Steklov condition on Γ2. The functions f(x, t) and g(x, t) are given real valued
Carathéodory functions defined in Ω×R and Γ2×R, respectively, and λ and μ
are parameters. When S(x, t) = 1

p(x) t
p(x), the operator div [St(x, |∇u|2)∇u] in

the left-hand side of the first equation of (1.1) is the, so called, p(x)-Laplacian
operator Δp(x)u = div (|∇u|p(x)−2∇u), where p(x) > 1.

The study of such type of differential equations with p(x)-growth conditions
is a very interesting topic recently. Such problem stimulates its application in
mathematical physics, in particular, in elastic mechanics (cf. Zhikov [25]), in
electrorheological fluids (cf. Diening [7], Halsey [13], Mihăilescu and Rădulescu
[17], R

◦
uz̆ic̆ka [18]).

Over the last two decades, there are many articles on the existence of weak
solutions for the Dirichlet boundary condition, that is, in the case Γ2 = ∅ in
problem (1.1), (for example, see Fan [9], Fan and Zhao [10], Avci [4], Yücedaĝ
[21]). On the other hand, for the Steklov boundary condition, that is, in the
case Γ1 = ∅, for example, see Ji [14], Wei and Chen [19], Yücedaĝ [22], Allaoui
et al [1], Ayoujil [5], Deng [6].

To the best of our knowledge, we can not find any problem with the mixed
boundary condition in variable exponent Sobolev space as in (1.1) except the
case p(x) = p = const. in Zeidler [23], so we are convinced of the reason for
existence of this paper.

Under some assumptions on given functions f and g in problem (1.1), we
show the existence of at least two nontrivial weak solutions according to the
values of parameters λ and μ (cf. Theorem 3.1). In order to do so, we use the
direct method of calculus of variation in this paper.

The paper is organized as follows. Section 2 consists of three subsections. In
subsection 2.1, we recall some results on variable exponent Lebesgue-Sobolev
spaces. In subsection 2.2, we introduce a Carathéodory function S(x, t). In
subsection 2.3, we set a problem rigorously and the properties of associated
functionals. In Section 3, we state the main theorems on the existence of at
least two nontrivial weak solutions for problem (1.1). Section 4 devotes the
proof of the main theorem.
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2 Preliminaries

Throughout this paper, we only consider vector spaces of real valued func-
tions over R. For any space B, we denote BN by the boldface character B.
Hereafter, we use this character to denote vectors and vector-valued functions,
and we denote the standard inner product of vectors a = (a1, . . . , aN) and
b = (b1, . . . , bN) in R

N by a · b =
∑N

i=1 aibi and |a| = (a · a)1/2.

2.1 Basic properties of variable exponent Lebesgue and
Sobolev spaces Lp(·)(Ω), W 1,p(·)(Ω).

In this subsection, we recall some results on variable exponent Lebesgue-Sobolev
spaces. See [10], Diening et al. [8], Kovác̆ik and Rácosńıc [15] and references
therein for more detail. Let Ω be a bounded domain in R

N (N ≥ 2) with a
C0,1-boundary Γ. Write C+(Ω) = {p ∈ C(Ω); p(x) > 1 for all x ∈ Ω}, and let

p+ = max
x∈Ω

p(x) and p− = min
x∈Ω

p(x) (> 1) for p ∈ C+(Ω).

The variable exponent Lebesgue space is defined by

Lp(·)(Ω)=
{

u; u : Ω → R is a measurable function satisfying
∫

Ω

|u(x)|p(x)dx <∞
}

.

We introduce the Luxemburg norm on Lp(·)(Ω) by

‖u‖Lp(·)(Ω) = inf

{
λ > 0;

∫
Ω

∣∣∣∣u(x)
λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Then (Lp(·)(Ω), ‖ · ‖Lp(·)(Ω)) becomes a Banach space. The conjugate space of
Lp(·)(Ω) becomes Lp′(·)(Ω), where 1

p(x) + 1
p′(x) = 1. A modular ρp(·) : Lp(·)(Ω) →

R is defined by

ρp(·)(u) =
∫

Ω

|u(x)|p(x)dx for u ∈ Lp(·)(Ω).

The following propositions are well known (see Fan et al. [12], [19], Fan and
Zhao [11], Zhao et al. [24], [21]).

Proposition 2.1. Let u, un ∈ Lp(·)(Ω) (n = 1, 2, . . .). Then we have
(i) ‖u‖Lp(·)(Ω) < 1(= 1, > 1) ⇐⇒ ρp(·)(u) < 1(= 1, > 1).

(ii) ‖u‖Lp(·)(Ω) > 1 =⇒ ‖u‖p−

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ‖u‖p+

Lp(·)(Ω)
.

(iii) ‖u‖Lp(·)(Ω) < 1 =⇒ ‖u‖p+

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ‖u‖p−

Lp(·)(Ω)
.

Hence min{‖u‖p−

Lp(·)(Ω)
, ‖u‖p+

Lp(·)(Ω)
} ≤ ρp(·)(u) ≤ max{‖u‖p−

Lp(·)(Ω)
, ‖u‖p+

Lp(·)(Ω)
}.
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(iv) limn→∞ ‖un − u‖Lp(·)(Ω) = 0 ⇐⇒ limn→∞ ρp(·)(un − u) = 0 ⇐⇒ {un}
converges to u in measure in Ω and limn→∞ ρp(·)(un) = ρp(·)(u).

(v) ‖un‖Lp(·)(Ω) → ∞ as n → ∞ ⇐⇒ ρp(·)(un) → ∞ as n → ∞.

Let q ∈ C+(Γ) := {q ∈ C(Γ); q(x) > 1 on Γ} and denote the surface mea-
sure on Γ by dσ. We define

�Lq(·)(Γ) =
{

u; u : Γ → R is measurable with respect to dσ

satisfying
∫

Γ

|u(x)|q(x)dσ < ∞
}

and the norm is defined by

‖u‖Lq(·)(Γ) = inf

{
λ > 0;

∫
Γ

∣∣∣∣u(x)
λ

∣∣∣∣q(x)

dσ ≤ 1

}
,

and we also define a modular ρq(·),Γ on Lq(·)(Γ) by

ρq(·),Γ(u) =
∫

Γ

|u(x)|q(x)dσ.

Proposition 2.2. We have the following.
(i) ‖u‖Lq(·)(Γ) ≥ 1 =⇒ ‖u‖q−

Lq(·)(Γ)
≤ ρq(·),Γ(u) ≤ ‖u‖q+

Lq(·)(Γ)
.

(ii) ‖u‖Lq(·)(Γ) < 1 =⇒ ‖u‖q+

Lq(·)(Γ)
≤ ρq(·),Γ(u) ≤ ‖u‖q−

Lq(·)(Γ)
.

The following is a generalized Hölder inequality.

Proposition 2.3. Let p ∈ C+(Ω). For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we
have∣∣∣∣∫

Ω

uvdx

∣∣∣∣ ≤ ( 1
p−

+
1

p+

)
‖u‖Lp(·)(Ω)‖v‖Lp′(·)(Ω) ≤ 2‖u‖Lp(·)(Ω)‖v‖Lp′(·)(Ω).

(2.1)

Since Lp(·)(Ω) ⊂ L1
loc(Ω), every function in Lp(·)(Ω) has a distributional

(weak) derivatives. The variable exponent Sobolev space W 1,p(·)(Ω) is defined
by

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω); ∇u ∈ Lp(·)(Ω)},
where ∇ is the gradient operator, equipped with the norm

‖u‖W1,p(·)(Ω) = inf

{
λ > 0;

∫
Ω

(∣∣∣∣u(x)
λ

∣∣∣∣p(x)

+
∣∣∣∣∇u(x)

λ

∣∣∣∣p(x)
)

dx ≤ 1

}
.
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Define

p∗(x) =

{
Np(x)

N−p(x) if p(x) < N,

∞ if p(x) ≥ N

and

p∂(x) =

{
(N−1)p(x)

N−p(x)
if p(x) < N,

∞ if p(x) ≥ N.

Proposition 2.4. (i) The spaces Lp(·)(Ω) and W 1,p(·)(Ω) are separable, re-
flexive and uniformly convex Banach spaces.

(ii) If q(x) ∈ C+(Ω) satisfies q(x) < p∗(x) for all x ∈ Ω, then the embedding
mapping W 1,p(·)(Ω) → Lq(·)(Ω) is compact.

(iii) If q(x) ∈ C+(Γ) satisfies q(x) < p∂(x) for all x ∈ Γ, then the trace
mapping W 1,p(·)(Ω) → Lq(·)(Γ) is compact. In particular, the trace mapping
W 1,p(·)(Ω) → Lp(·)(Γ) is compact and there exists a constant C > 0 such that

‖u‖Lp(·)(Γ) ≤ C‖u‖W1,p(·)(Ω) for u ∈ W 1,p(·)(Ω).

Let Γ1 and Γ2 be satisfy (1.3). For p ∈ C+(Ω), define

Lp(·)(Γ1) = {v; v : Γ1 → R is measurable with respect to dσ

and there exists u ∈ Lp(·)(Γ) such that u = v on Γ1}
with the norm

‖v‖Lp(·)(Γ1) = inf{‖u‖Lp(x)(Γ); u ∈ Lp(·)(Γ) and u = v on Γ1}.

Clearly, the restriction mapping Lp(·)(Γ) → Lp(·)(Γ1) is continuous, so

W 1,p(·)(Ω) ↪→ Lp(·)(Γ) ↪→ Lp(·)(Γ1),

where the symbol ↪→ denotes that the embedding mapping is continuous, and
there exists a constant C > 0 such that

‖v‖Lp(·)(Γ1) ≤ ‖v‖Lp(·)(Γ) ≤ C‖v‖W1,p(·)(Ω) for all v ∈ W 1,p(·)(Ω).

Define a space
X = {v ∈ W 1,p(·)(Ω); v = 0 on Γ1}. (2.2)

Then it is clear to see that X is a closed subspace of W 1,p(·)(Ω), so X is a
reflexive and separable, uniformly convex Banach space. We define the norm

‖v‖X = ‖∇v‖Lp(·)(Ω) for v ∈ X

which is equivalent to ‖v‖W1,p(·)(Ω) according to the following Poincaré type
inequality.
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Proposition 2.5. Let Ω be a bounded domain with the boundary Γ satisfying
(1.3). Then there exists a constant C > 0 such that

‖v‖Lp(·)(Ω) ≤ C‖∇v‖Lp(·)(Ω) for all v ∈ X.

Proof. If the conclusion does not hold, there exists a sequence {vn} ⊂ X such
that ‖vn‖Lp(·)(Ω) = 1 and ‖∇vn‖Lp(·)(Ω) ≤ 1/n. Then {vn} is bounded in X.
Since X is a reflexive Banach space, there exists a subsequence {vnk} of {vn}
and v ∈ X such that vnk → v weakly in X, vnk → v weakly in Lp(·)(Ω) and
∇vnk → 0 strongly in Lp(·)(Ω). Since vnk → v in D′(Ω), we have ∇vnk → ∇v
in D′(Ω). Hence ∇v = 0 in D′(Ω). Thereby v = const.. Since v vanishes on
Γ1(�= ∅), we have v = 0. Therefore, vnk → 0 weakly in X. Since p(x) < p∗(x),
the embedding X ↪→ Lp(·)(Ω) is compact. Hence vnk → 0 strongly in Lp(·)(Ω).
This contradicts ‖vnk‖Lp(·)(Ω) = 1. �

2.2 A Carathéodory function

Let p ∈ C+(Ω) be fixed. Let S(x, t) be a Carathéodory function defined on
Ω × [0,∞), and assume that for a.e. x ∈ Ω, S(x, t) ∈ C2((0,∞)) ∩ C([0,∞))
satisfies the following structure conditions: there exist positive constants 0 <
s∗ ≤ s∗ < ∞ such that for a.e. x ∈ Ω

S(x, 0) = 0 and s∗t(p(x)−2)/2 ≤ St(x, t) ≤ s∗t(p(x)−2)/2 for t > 0. (2.3a)
s∗t(p(x)−2)/2 ≤ St(x, t) + 2tStt(x, t) ≤ s∗t(p(x)−2)/2 for t > 0. (2.3b)

Stt(x, t)< 0 when1 < p(x) < 2 andStt(x, t) ≥ 0 when p(x) ≥2 for t > 0, (2.3c)

where St = ∂S/∂t and Stt = ∂2S/∂t2. We note that from (2.3a), we have

2
p(x)

s∗tp(x)/2 ≤ S(x, t) ≤ 2
p(x)

s∗tp(x)/2 for t ≥ 0. (2.4)

We introduce two examples. When S(x, t) = ν(x) 1
p(x) t

p(x)/2, where ν is a
measurable function in Ω satisfying 0 < ν∗ ≤ ν(x) ≤ ν∗ < ∞ for a.e. in Ω, the
function S(x, t) satisfies (2.3a)-(2.3c). In particular case ν ≡ 1, this example
corresponds to the p(x)-Laplacian operator. As an another example, we can
take

g(t) =
{

ae−1/t + a for t > 0,
a for t = 0,

where a > 0 is a constant. Then we can see that S(x, t) = ν(x)g(t) 1
p(x) t

p(x)/2

satisfies (2.3a)-(2.3c) if p(x) ≥ 2 for all x ∈ Ω, (cf. Aramaki [3]).
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2.3 Setting of the problem

We consider problem (1.1). Throughout this paper, we suppose the following
(f0) and (g0).

(f0) Let f : Ω × R → R be a Carathéodory function satisfying

|f(x, t)| ≤ C1 + C2|t|α(x)−1 for a.e. x ∈ Ω and all t ∈ R,

where C1 and C2 are non-negative constants, α ∈ C+(Ω) and α(x) < p∗(x) for
all x ∈ Ω.

(g0) Let g : Γ2 × R → R be a Carathéodory function satisfying

|g(x, t)| ≤ D1 + D2|t|β(x)−1 for a.e. x ∈ Γ2 and all t ∈ R,

where D1 and D2 are non-negative constants, β ∈ C+(Γ2) and β(x) < p∂(x)
for all x ∈ Γ2.

Define

F (x, t) =
∫ t

0

f(x, s)ds for a.e. x ∈ Ω and t ∈ R, (2.5)

G(x, t) =
∫ t

0

g(x, s)ds for a.e. x ∈ Γ2 and t ∈ R. (2.6)

Now we give the notion of weak solutions for problem (1.1).

Definition 2.6. We say u ∈ X is a weak solution of problem (1.1), if∫
Ω

St(x, |∇u|2)∇u · ∇vdx +
∫

Ω

a(x)|u|p(x)−2uvdx

= λ

∫
Ω

f(x, u)vdx + μ

∫
Γ2

g(x, u)vdσ for all v ∈ X. (2.7)

We solve problem (1.1) by the direct method of calculus of variation. For
this purpose, we consider the following functional on X defined by

I(u) = Φ(u) − λJ(u) − μK(u), (2.8)

where, for u ∈ X,

Φ(u) =
1
2

∫
Ω

S(x, |∇u(x)|2)dx +
∫

Ω

a(x)
p(x)

|u(x)|p(x)dx, (2.9)

J(u) =
∫

Ω

F (x, u(x))dx, (2.10)

K(u) =
∫

Γ2

G(x, u(x))dσ. (2.11)
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If Φ, J, K ∈ C1(X, R), that is, Φ, J and K have continuous Gâteau derivatives,
we can easily derive

〈I′(u), v〉 =
∫

Ω

St(x, |∇u|2)∇u · ∇vdx +
∫

Ω

a(x)|u|p(x)−2uvdx

− λ

∫
Ω

f(x, u)vdx − μ

∫
Γ2

g(x, u)vdσ for all u, v ∈ X, (2.12)

where 〈·, ·〉 denotes the duality bracket between X∗ and X, and I′ : X → X∗

is the Fréchet derivative of I. Thus if u ∈ X is a critical point of I, that is,
I′(u) = 0, then u satisfies (2.7), so u is a weak solution of problem (1.1).

Now we give the properties of the functionals Φ, J and K defined by (2.9),
(2.10) and (2.11).

Proposition 2.7. Let p ∈ C+(Ω). Assume that (f0) and (g0) hold. Then we
can see that the following properties are satisfied.

(i) We can see that Φ, J, K ∈ C1(X, R).
(ii) The functional Φ is sequentially weakly lower semi-continuous. The

mapping Φ′ : X → X∗ is a strictly monotone, bounded on each bounded subset
of X, homeomorphism, and of (S+)-type, namely, if un → u weakly in X and
lim supn→∞〈Φ′(un), un − u〉 ≤ 0, then we have un → u strongly in X.

(iii) The mappings J ′, K′ : X → X∗ are sequentially weakly-strongly contin-
uous, that is, if un → u weakly in X, then J ′(un) → J ′(u) and K′(un) → K′(u)
strongly in X∗, so the functionals J, K : X → R are sequentially weakly con-
tinuous,

For the proof, see [10], [14, Proposition 2.5].

3 Statement of the main theorem

In this section, we state the main theorem on the existence of at least two
nontrivial weak solutions to problem (1.1) rigorously. In order to do so, we
assume the following.

(f1) (f0) holds with α ∈ C+(Ω) satisfying p(x) < α(x) < p∗(x) for x ∈ Ω
and p+ < α−.

(g1) There exists a positive function g(x) ∈ L∞(Γ2) on Γ2 such that

g(x, t) = g(x)|t|β(x)−2t for x ∈ Γ2 and all t ∈ R,

where β ∈ C+(Γ2), β(x) < p∂(x) for x ∈ Γ2 and β+ < p−.
Clearly (f1) and (g1) are more stronger than (f0) and (g0), respectively.
(f2) limt→0

f(x,t)
|t|p(x)−1 = 0 uniformly in x ∈ Ω.

(f3) There exists q > max
{

s∗
s∗ , a∗

a∗

}
p+(> p+) such that the inequality

qF (x, t) ≤ f(x, t)t holds for all (x, t) ∈ Ω × R.
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(f4) infx∈Ω,|t|=1 F (x, t) > 0.
We are in a position to state the main theorem.

Theorem 3.1. Let Ω be a bounded domain in R
N with a C0,1-boundary Γ

satisfying (1.3) and a function a(x) a measurable function in Ω satisfying (1.2).
Moreover, we assume that (f1)-(f4) and (g1) hold. Then for any λ∗ > 0, there
exists μ∗ > 0 such that for any 0 < λ < λ∗ and 0 < μ < μ∗, problem (1.1) has
at least two nontrivial weak solutions.

4 Proof of Theorem 3.1

According to (f2), for any ε > 0, there exists δ = δ(ε) > 0 such that

|f(x, t)| ≤ ε|t|p(x)−1 for any x ∈ Ω and |t| < δ.

From (f1), for |t| ≥ δ,

|f(x, t)| ≤ C1

( |t|
δ

)α(x)−1

+ C2|t|α(x)−1 ≤
(

C1

δα(x)−1
+ C2

)
|t|α(x)−1.

Summing up, there exists a constant Cε > 0 such that

|f(x, t)| ≤ ε|t|p(x)−1 + Cε|t|α(x)−1 for all (x, t) ∈ Ω × R.

Therefore,

|F (x, t)| =
∣∣∣∣∫ t

0

f(x, s)ds

∣∣∣∣ ≤ ε

p(x)
|t|p(x) +

Cε

α(x)
|t|α(x)

≤ ε

p−
|t|p(x) +

Cε

α− |t|α(x) for all (x, t) ∈ Ω × R. (4.1)

Hence we have, for u ∈ X,∫
Ω

F (x, u)dx ≤ ε

p−

∫
Ω

|u|p(x)dx +
Cε

α−

∫
Ω

|u|α(x)dx. (4.2)

Moreover, from (g1), we have∫
Γ2

G(x, u)dσ ≤ ‖g‖L∞(Γ2)

β−

∫
Γ2

|u|β(x)dσ. (4.3)

Lemma 4.1. For any λ∗ > 0, there exist ρ, c0, μ
∗ > 0 depending on λ∗ such

that for any 0 < λ < λ∗ and 0 < μ < μ∗, we have

I(u) ≥ c0 for all u ∈ X with ‖u‖X = ρ.
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Proof. From (2.4), (1.2), (4.2) and (4.3), we can derive

I(u) ≥ s∗
p+

∫
Ω

|∇u|p(x)dx +
a∗
p+

∫
Ω

|u|p(x)dx− λ∗ε
p−

∫
Ω

|u|p(x)dx

− λ∗Cε

α−

∫
Ω

|u|α(x)dx− μ‖g‖L∞(Γ2)

β−

∫
Γ2

|u|β(x)dσ. (4.4)

Choose ε > 0 so that a∗/p+ = λ∗ε/p−. Since X ↪→ Lα(·)(Ω) and X ↪→
Lβ(·)(Γ2), there exists a constant C1 > 1 such that

‖u‖Lα(·)(Ω) ≤ C1‖u‖X and ‖u‖Lβ(·)(Γ2) ≤ C1‖u‖X .

Let us choose ‖u‖X ≤ 1/C1(< 1). Then by Proposition 2.1 and 2.2,∫
Ω

|u|α(x)dx ≤ ‖u‖α−
Lα(·)(Ω) ≤ Cα−

1 ‖u‖α−
X ,∫

Γ2

|u|β(x)dσ ≤ ‖u‖β−

Lβ(·)(Γ2)
≤ Cβ−

1 ‖u‖β−
X .

Thus it follows from (4.4) that

I(u) ≥ s∗
p+

‖u‖p+

X − λ∗CεC
α−
1

α− ‖u‖α−
X − μ‖g‖L∞(Γ2)C

β−
1

β− ‖u‖β−
X . (4.5)

We define

ρ = min

{(
s∗

2p+
· α−

λ∗CεCα−
1

)1/(α−−p+)

,
1

C1

}
.

We note that

ρα−−p+ ≤ s∗
2p+

· α−

λ∗CεCα−
1

.

When ‖u‖X = ρ, from (4.5), we can derive

I(u) ≥ s∗
2p+

ρp+ − μ‖g‖L∞(Γ2)C
β−
1

β− ρβ−
.

Define

μ∗ =
s∗

2p+
· β−

2‖g‖L∞(Γ2)C
β−
1

ρp+−β−
.

Then for 0 < μ < μ∗, we have

I(u) ≥ c0 :=
s∗

4p+
ρp+

.

Thus the lemma is proved. �
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Lemma 4.2. There exists e ∈ X such that ‖e‖X > ρ and I(e) < 0.

Proof. For each (x, t) ∈ Ω × R, define

γ1(τ ) = τ−qF (x, τt)− F (x, t) for τ ≥ 1.

It follows from (f3) that

γ′
1(τ ) = τ−q−1(f(x, τt)τt − qF (x, τt)) ≥ 0 for τ ≥ 1.

Thus γ1(τ ) is increasing on [1,∞), so γ1(τ ) ≥ γ1(1) for 1 ≤ τ < ∞. Therefore,
we have

F (x, τt) ≥ τ qF (x, t) for all (x, t) ∈ Ω × R and τ ≥ 1. (4.6)

By (f4), there exists a non-negative function ϕ ∈ C∞
0 (Ω) such that ϕ �≡ 0 and∫

Ω

F (x, ϕ)dx > 0.

For τ ≥ 1, it follows from (4.6) that

I(τϕ) =
∫

Ω

(
1
2
S(x, |τ∇ϕ|2) +

a(x)
p(x)

|τϕ|p(x)

)
dx

−λ

∫
Ω

F (x, τϕ)dx− μ

∫
Γ2

G(x, τϕ)dσ

≤ s∗

p−
τp+

∫
Ω

|∇ϕ|p(x)dx +
a∗

p−
τp+

∫
Ω

|ϕ|p(x)dx− λτ q

∫
Ω

F (x, ϕ)dx.

Since q > p+, λ > 0 and
∫
Ω

F (x, ϕ)dx > 0, we see that I(τϕ) → −∞ as τ → ∞.
Hence there exists τ0 = τ (λ) > 0 such that ‖τ0ϕ‖X > ρ and I(τ0ϕ) < 0. It
suffices to put e = τ0ϕ. �

Lemma 4.3. The functional I satisfies the Palais-Smale condition, that is, if
{un} ⊂ X satisfies I(un) → c ∈ R and I′(un) → 0 in X∗ as n → ∞, then {un}
has a strongly convergent subsequence in X.

Proof. Let {un} ⊂ X be a sequence in X satisfying I(un) → c ∈ R and
I′(un) → 0 in X∗.

Step 1. We show that {un} is bounded in X.
If {un} is unbounded, there exists a subsequence (still denoted by {un})

such that ‖un‖X → ∞ as n → ∞. Since |〈I′(un), un〉| ≤ ‖I′(un)‖X∗‖un‖X
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and I′(un) → 0 in X∗, for large n, using (f3),

c + 1 + ‖un‖X ≥ I(un) − 1
q
〈I′(un), un〉

=
∫

Ω

(
1
2
S(x, |∇un|2) +

a(x)
p(x)

|un|p(x)

)
dx − λ

∫
Ω

F (x, un)dx

−μ

∫
Γ2

G(x, un)dσ − 1
q

∫
Ω

St(x, |∇un|2)|∇un|2dx

−1
q

∫
Ω

a(x)|un|p(x)dx + λ

∫
Ω

1
q
f(x, un)undx

+μ

∫
Γ2

1
q
g(x, un)undσ

≥
(

s∗
p+

− s∗

q

)∫
Ω

|∇un|p(x)dx +
(

a∗
p+

− a∗

q

)∫
Ω

|un|p(x)dx

−μ

∫
Γ2

G(x, un)dσ + μ

∫
Γ2

1
q
g(x, un)undσ

≥ min
{

s∗
p+

− s∗

q
,
a∗
p+

− a∗

q

}∫
Ω

(|∇un|p(x) + |un|p(x))dx

−μ

∫
Γ2

G(x, un)dσ + μ

∫
Γ2

1
q
g(x, un)undσ.

Here we have∫
Γ2

|G(x, un)|dσ ≤ 1
β− ‖g‖L∞(Γ2)

∫
Γ2

|un|β(x)dσ

≤ 1
β− ‖g‖L∞(Γ2) max{‖un‖β−

Lβ(·)(Γ2)
, ‖un‖β+

Lβ(·)(Γ2)
}

≤ 1
β− ‖g‖L∞(Γ2)C

β+

1 ‖un‖β+

X .

Similarly, we have

1
q

∫
Γ2

|g(x, un)un|dσ ≤ 1
q
‖g‖L∞(Γ2)C

β+

1 ‖un‖β+

X .

Therefore, we have

c + 1 + ‖un‖X ≥ min
{

s∗
p+

− s∗

q
,
a∗
p+

− a∗

q

}
‖un‖p−

X − μC2‖un‖β+

X .

Since β+ < p− and (f3) holds, dividing both-hand side by ‖un‖β+

X and letting
n → ∞, this leads a contradiction.
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Step 2. Since X is a reflexive Banach space, passing to a subsequence, we
can assume that un → u weakly in X for some u ∈ X, strongly in Lα(·)(Ω) ∩
Lβ(·)(Γ2). We remember

〈I′(u), v〉 = 〈Φ′(u), v〉 − λ〈J ′(u), v〉 − μ〈K′(u), v〉 for u, v ∈ X.

By the Hölder inequality (Proposition 2.3), we have

|〈J ′(un), un−u〉| ≤
∫

Ω

|f(x, un)(un−u)|dx ≤
∫

Ω

(C1+C2|un|α(x)−1)|un−u|dx

≤ 2‖C1 + C2|un|α(x)−1‖Lα′(·)(Ω)‖un − u‖Lα(·)(Ω) → 0 as n → ∞,

and

|〈K′(un), un − u〉| ≤
∫

Γ2

|g(x, un)(un − u)|dσ ≤
∫

Γ2

g(x)|un|β(x)−1|un − u|dσ

≤ ‖g‖L∞(Γ2)‖|un|β(x)−1‖Lβ′(·)(Γ2)
‖un − u‖Lβ(·)(Γ2) → 0 as n → ∞,

Here we used the boundedness of {un} in X by Step 1. Since {un − u} is
bounded and I′(un) → 0 in X∗, 〈I′(un), un − u〉 → 0 as n → ∞. Thus
〈Φ′(un), un − u〉 → 0 as n → ∞. Since Φ′ is (S+)-type from Proposition 2.7,
we can see that un → u strongly in X. �

Lemma 4.4. There exists w ∈ X such that w �≡ 0 and I(τw) < 0 for τ > 0
small enough.

Proof. For (x, t) ∈ Ω × R, define γ2(τ ) = F (x, τ−1t)τ q for τ ≥ 1. Then from
(f3), we have

γ′
2(τ ) = qF (x, τ−1t)τ q−1 + f(x, τ−1t)

(− 1
τ2

t
)
τ q

= τ q−1
(
qF (x, τ−1t) − f(x, τ−1t)τ−1t

) ≤ 0.

Hence γ2(τ ) is non-increasing on [1,∞). For |t| ≥ 1, γ2(1) ≥ γ2(|t|), that is,

F (x, t) ≥ F (x, |t|−1t)|t|q ≥ c|t|q for some c > 0.

Here we used (f4). From (f2), there exists η > 0 such that

|f(x, t)t|
|t|p(x)

=
|f(x, t)|
|t|p(x)−1

≤ 1 for all x ∈ Ω and 0 < |t| < η.

From (f1), there exists Cη > 0 such that

|f(x, t)t|
|t|p(x)

≤ C1 + C2|t|α(x)−1)|t|
|t|p(x)

≤ Cη
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for x ∈ Ω and η ≤ |t| ≤ 1. Hence

f(x, t)t ≥ −(1 + Cη)|t|p(x) for x ∈ Ω and |t| ≤ 1.

Therefore, by F (x, 0) = 0 and the mean value theorem,

F (x, t) =
∫ 1

0

f(x, τt)tdτ ≥ −(1 + Cη)
∫ 1

0

|τt|p(x)τ−1dτ ≥ −1 + Cη

p−
|t|p(x)

for all x ∈ Ω and |t| ≤ 1. Summing up the above, we have

F (x, t) ≥ c|t|q − C3|t|p(x) for all (x, t) ∈ Ω × R,

where C3 = (1 + Cη)/p− + c. Since

G(x, t) =
∫ 1

0

g(x, τt)tdτ = g(x)
∫ 1

0

|τt|β(x)−2(τt)tdτ =
g(x)
β(x)

|t|β(x)

and g(x) > 0 on Γ2, if we choose w ∈ (C∞(Ω) ∩ X) \ W
1,p(·)
0 (Ω), where

W
1,p(·)
0 (Ω) = {v ∈ W 1,p(·)(Ω); v = 0 on Γ},

then we have
∫
Γ2

G(x, w)dσ > 0. For 0 < τ ≤ 1, we have

I(τw) ≤ s∗

p−
τp−

∫
Ω

|∇w|p(x)dx +
a∗

p−
τp−

∫
Ω

|w|p(x)dx

−cλτ q

∫
Ω

|w|qdx + λC3τ
p−
∫

Ω

|w|p(x)dx− μτβ+
∫

Γ2

G(x, w)dσ

≤ s∗

p−
τp−

∫
Ω

|∇w|p(x)dx +
(

a∗

p−
+ λC3

)
τp−

∫
Ω

|w|p(x)dx

−μτβ+
∫

Γ2

G(x, w)dσ.

Since
∫
Γ2

G(x, w)dσ > 0 and β+ < p−, there exists τ0 = τ0(λ) > 0 such
that for 0 < τ < τ0, I(τw) < 0. �

Proof of Theorem 3.1
From Lemma 4.1, for any λ∗ > 0, there exist ρ, c0, μ

∗ > 0 such that if
0 < λ < λ∗, 0 < μ < μ∗, then I(u) ≥ c0 for all u ∈ X with ‖u‖X = ρ. From
Lemma 4.2, there exists e ∈ X with ‖e‖X > ρ such that I(e) < 0 = I(0).
Moreover, from Lemma 4.3, the functional I satisfies Palais-Smale condition.
Hence all assumptions of the mountain pass theorem by Ambrosetti-Rabinowitz
hold (cf. [2] and Willem [20, Theorem 1.17]). Let

C = {c ∈ C([0, 1]; X) : c(0) = 0, c(1) = e}
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and c = infc∈C supt∈[0,1] I(c(t)). Then there exists a critical point u1 ∈ X of I,
that is, I′(u1) = 0 and I(u1) = c ≥ c0 > 0. So u1 is a nontrivial weak solution
of problem (1.1).

We show that the existence of the second nontrivial weak solution u2 ∈ X
such that u2 �= u1 by the Ekeland variational principle (cf. Mawhin and Willem
[16, Theorem 4.2]). If we put Bρ(0) = {v ∈ X; ‖v‖X < ρ}, then it follows from
Lemma 4.1 that infv∈∂Bρ(0) I(v) > 0. From the proof of Lemma 4.1, I is
bounded from below in Bρ(0) and from Lemma 4.4, there exists w ∈ X such
that I(τw) < 0 for τ > 0 small enough. Thus

−∞ < c := inf
v∈Bρ(0)

I(v) < 0.

Choose ε > 0 so that 0 < ε < infv∈∂Bρ(0) I(v) − infv∈Bρ(0) I(v). Applying the
Ekeland variational principle to I : Bρ(0) → R, there exists uε ∈ Bρ(0) such
that

I(uε) < inf
v∈Bρ(0)

I(v) + ε, (4.7)

I(uε) ≤ I(u) + ε‖u − uε‖X for all u ∈ Bρ(0) with u �= uε. (4.8)

Since I(uε) < infv∈∂Bρ(0) I(v), we see that uε ∈ Bρ(0). Hence

inf
v∈Bρ(0)

I(v) ≤ I(uε) < inf
v∈Bρ(0)

I(v) + ε. (4.9)

Define a functional Ĩ : Bρ(0) → R by Ĩ(u) = I(u) + ε‖u − uε‖X . Since
Ĩ(u) ≥ I(uε) = Ĩ(uε) for u ∈ Bρ(0), uε is a minimum of Ĩ in Bρ(0). Hence

Ĩ(uε + τv) − Ĩ(uε)
τ

≥ 0 for all τ > 0 small enough and for all v ∈ Bρ(0).

Tha is,
I(uε + τv) − I(uε)

τ
+ ε‖v‖X ≥ 0 for all v ∈ Bρ(0).

Letting τ → +0, we have 〈I′(uε), v〉 ≥ −ε‖v‖X . If we replace v with −v ∈
Bρ(0), then we have

〈I′(uε), v〉 ≤ ε‖v‖X for all v ∈ Bρ(0).

This implies that ‖I′(uε)‖X∗ ≤ ε. Since ε > 0 is arbitrary, there exists un ∈
Bρ(0) such that using (4.9),

I(un) → c < 0 and I′(un) → 0 in X∗.

By Lemma 4.3, there exists u2 ∈ X such that un → u2 strongly in X. Since
I ∈ C1(X; R), I′(u2) = 0 and I(u2) = c < 0, that is, u2 is a nontrivial weak
solution of problem (1.1). Since I(u1) = c ≥ c0 > 0 and I(u2) = c < 0, we
have u1 �= u2. This completes the proof of Theorem 3.1.
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