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Abstract

In this paper, for solving the multiple-sets split equality problem
(MSSEP), we give a general approach to construct iterative methods.
We present an weakly convergent string-averaging algorithmic scheme
and its relaxed variant, that contain the cyclic and simultaneous itera-
tive methods as particular cases. Then, we also propose a combination
of the steepest-descent method with one of these scheme to obtain strong
convergence. In our methods, we do not need to have any information
on the operator norms. We also give numerical examples for illustrating
our main methods.

1. Introduction

Let H1, H2 and H3 be real Hilbert spaces. Let J1 and J2 be two index sets with
N and M elements, respectively, where N and M are any positive integers. Let
{Ci}i∈J1 and {Qj}j∈J2 be two families of closed convex subsets in H1 and H2,
respectively, and let A : H1 → H3 and B : H2 → H3 be two bounded linear
mappings with the standard norms ‖A‖ and ‖B‖, respectively. We denote by
I, 〈·, ·〉 and ‖ · ‖ the identity mapping, inner product and norm for any Hilbert
space.
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The multiple-sets split equality problem is to find a point z∗ = [x∗, y∗] with
the properties:

x∗ ∈ C := ∩i∈J1Ci and y∗ ∈ Q := ∩j∈J2Qj such that Ax∗ = By∗.
(1.1)

Denote the set of solutions for (1.1) by Γ, assumed to be non-empty in this
paper.

Clearly, when H2 = H3 and B = I, the MSSEP reduces to the multiple-
sets split feasibility problem (MSSFP), that was first introduced by Censor and
Elfving [1] for modeling inverse problems that arise from phase retrievals and
in image reconstruction [2]. Recently, the MSSFP can also be used to model
the intensity-modulated radiation therapy [3-6] and references therein.

In the case that N = M = 1, the MSSEP reduces to the split equality
problem (SEP), that is to find points x∗ and y∗ such that

x∗ ∈ C, y∗ ∈ Q and Ax∗ = By∗. (1.2)

Problem (1.2) was introduced and studied by Byrne and Moudafi [7] in finite-
dimensional spaces. This is actually an optimization problem with weak cou-
pling in the constraint and its interest covers many situations, for instance,
in domain decomposition for PDEs [8] and game theory [9]. In order to
solve problem (1.2), they introduced the weak convergent CQ-like method,
z1 = [x1, y1] ∈ C × Q and

xk+1 = PC(xk − γkA∗(Axk − Byk)),

yk+1 = PQ(xk + γkB∗(Axk − Byk)), ∀k ≥ 1,
(1.3)

where A∗ and B∗ are the adjoints of A and B, respectively, and γk = γ is
chosen in the interval (a, b) ⊂ (0, min{1/‖A‖2, 1/‖B‖2}) for all k ≥ 1. So, the
choice value γ depends on the norms ‖A‖ and ‖B‖, that are not easy to be
calculated in practice. To overcome the difficulty, Dong et al. [10] and Vuong
et al. [11] indicated that γk can be chosen by

γk =
ρkf(xk, yk)

ak
with ρk ∈ (0, 4), (1.4)

where f(x, y) = ‖Ax − By‖2/2 and ak = ‖A∗(Axk − Byk)‖2 + ‖B∗(Axk −
Byk)‖2. Next, Chuang and Du [12] proved weak convergence for method (1.3)
when γk is chosen in the interval (0, 2/(‖A‖2+‖B‖2)) such that lim infk→∞ γk(2−
γk(‖A‖2 + ‖B‖2)) > 0 with an additional conditions on (xk, yk). Recently,
Wang [13] gave a new way to select the parameter γk. The iterative regu-
larization method and several projection methods have been investigated in
[14-19].

Clearly, in the Hilbert space H = H1×H2 with an inner product and a norm
denoted and defined by 〈z1, z2〉 = 〈x1, x2〉+〈y1 , y2〉 and ‖z‖ = (‖x‖2+‖y‖2)1/2,
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respectively, where z = [x, y] and zi = 〈xi, yi〉 with x, xi ∈ H1 and y, yi ∈ H2

for i = 1, 2, method (1.3) can be re-written in the compact form,

zk+1 = PS(I − γG∗G)zk, z1 ∈ H, (1.5)

where G = [A,−B]T : H → H and S = C × Q. Further, Li and Chen [20]
extended (1.5) to MSSEP (1.1) with N > M by a sequential iterative method,

zk+1 = PSm(k)(I − γG∗G)zk, (1.6)

where m(k) = k mod (N + 1) with Qj = H2, for M < j ≤ N , is some
additional set and Si = Ci × Qi for i = 1, · · · , N , and a simultaneous one,

zk+1 =
N∑

i=1

λiPSi (I − γG∗G)zk, (1.7)

where λi > 0 for all i such that
∑N

i=1 λi = 1 and γ ∈ (0, 2/‖G‖2). They
proposed also several iterative methods of Krasnoselskii-Mann’s type

zk+1 = (1 − tk)zk + tkPSN (I − γG∗G) · · ·PS1(I − γG∗G)zk,

zk+1 = (1 − tk)zk + tk

N∑
i=1

λiPSi(z
k − γG∗Gzk),

(1.8)

with a condition on tk :
∑∞

k=1 tk(1− tk) = ∞. All methods (1.5)-(1.8) converge
weakly to a point in Γ. In order to obtain strong convergence for the sequence
{zk}, defined by (1.6) or (1.7), they also introduced several iterative methods
of Halpern’s type, z = [u, v] ∈ H and

zk+1 = tkz + (1 − tk)PSm(k)(zk − γG∗Gzk),

zk+1 = tkz + (1 − tk)PSN (I − γG∗G) · · ·PS1 (I − γG∗G)zk,

zk+1 = tkz + (1 − tk)
N∑

i=1

λiPSi (z
k − γG∗Gzk),

(1.9)

with a new condition on tk, that is
(t) tk ∈ (0, 1) for all k ≥ 1, limk→∞ tk = 0,

∑∞
k=1 tk = ∞ and

(t′) either
∑∞

k=1 |tk+1 − tk| < ∞ or limk→∞(tk/tk+1) = 1.
Further, Zhao and Shi [18] introduced a new extragradient-type method for
the MSSEP. Meantime, Tian et al. [17] proposed a new iterative method, in
which the iterative step size is split self-adaptive without needing to have any
information about ‖A‖ and ‖B‖.

When H1 = H2 = H3 and A = B = I, problem (1.1) reduces to the convex
feasibility problem, that is to find a point p∗ ∈ ∩n

i=1Ci where n is a positive
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integer and Ci is a closed convex set in a Hilbert space H for all 1 ≤ i ≤ n.
To solve the convex feasibility problem, Censor et al [21] introduced a string-
averaging algorithmic scheme, that projects a point sequentially along several
independent strings of constraints. Projecting along each string is sequential,
but the strings are independent and projecting along them can be performed
in parallel. In final, the end-points of strings of sequential projections onto the
constraints are averaged.

The purpose of this paper is to use the results listed above to design a
general scheme for iterative methods, solving (1.1). The rest of this paper is
organized as follows. In Section 2, we list some related facts, that will be used in
the proof of our results. In Section 3, we propose a string-averaging scheme to
solve (1.1) and show its weak convergence. A relaxed string-averaging scheme
is considered in Section 4. In order to obtain strong convergence, we give a
combination of the string-averaging scheme with the steepest-descent method
for monotone mappings in Section 5. Finally, in Section 6, we give numerical
experiments for illustrating our main results.

2. Preliminaries

In any real Hilbert space H , we have the following inequality,

‖u + v‖2 ≤ ‖u‖2 + 2〈v, u + v〉, ∀u, v ∈ H.

Definitions 2.1 A mapping T from a subset Ω of H into H is called:

(i) nonexpansive, if ‖Tu − Tv‖ ≤ ‖u − v‖ for all u, v ∈ Ω;
(ii) contractive, if ‖Tu − Tv‖ ≤ ã‖u − v‖ for a fixed ã ∈ [0, 1) and for all
u, v ∈ Ω;
(iii) γ-inverse strongly monotone, if γ‖Tu − Tv‖2 ≤ 〈Tu − Tv, u − v〉 for all
u, v ∈ Ω, where γ is a positive number;
(iv) firmly nonexpansive, if there holds (iii) with γ = 1.
(v) η-strongly monotone and γ-strictly pseudocontractive mapping, if there
hold, respectively,

〈Tx1 − Tx2, x1 − x2〉 ≥ η‖x1 − x2‖2 and

〈Tx1 − Tx2, x1 − x2〉 ≤ ‖x1 − x2‖2 − γ‖(I − T )x1 − (I − T )x2‖2

for all x1, x2 ∈ Ω, where η and γ are some positive real numbers.

For a closed convex subset Ω of H , there exists a mapping PΩ : H onto Ω such
that PΩ(u) = infv∈Ω ‖v − u‖ for each u ∈ H . The mapping PΩ is called the
metric projection onto Ω. We know that PΩ is firmly nonexpansive (hence,
nonexpansive); I −PΩ is also firmly nonexpansive; 〈PΩu−z, u−PΩu〉 ≥ 0, u ∈
H, z ∈ Ω; and for any u ∈ H, z ∈ Ω we have that ‖u − PΩu‖2 + ‖PΩu − z‖2 ≤
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‖u− z‖2, u ∈ H, z ∈ Ω. The set of fixed points for T from Ω into H is denoted
by Fix(T ), i.e., Fix(T ) := {u ∈ Ω : Tu = u}.
Lemma 2.1 (see, [22]) Let Ω be a closed convex subset of a real Hilbert space
H and let T : Ω → Ω be a nonexpansive mapping with Fix(T ) = ∅. If {uk} is
a sequence in Ω weakly converging to u and if (I − T )uk converges strongly to
v, then (I − T )u = v. In particular, if v = 0, then u ∈ Fix(T ).

Lemma 2.2 (see, [23]) Let {ak}, {tk} and {ck} be sequences of real numbers
such that, for all k ≥ 1,
(i) ak+1 ≤ (1 − tk)ak + tkck;
(ii) ak ≥ 0;
(iii) There holds condition (t);
(iv) lim supk→∞ ck ≤ 0;
Then, limk→∞ ak = 0.

Lemma 2.3 (see, [24]) Let {ak} be a sequence of real numbers such that there
exists a subsequence {kl} of {k} such that akl < akl+1 for all positive integer
l. Then, there exists a nondecreasing sequence {mk} of positive integers such
that mk → ∞, amk ≤ amk+1 and ak ≤ amk+1 for all (sufficiently large) k ≥ 1.
In fact, mk = max{j ≤ k : aj ≤ aj+1}.
Lemma 2.4 (see, [25]) Let H be a real Hilbert space and {zk} a sequence in
H such that there exists a nonempty closed set Ω ⊆ H satisfying ωω(zk) ⊂ Ω
and limk→∞ ‖zk − z‖ exists for every z ∈ Ω. Then there exists z̃ ∈ Ω such that
{zk} converges weakly to z̃.

Lemma 2.5 (see, [26]) Let H be a real Hilbert space and let F : H → H be an
η-strongly monotone and γ-strictly pseudocontractive mapping with η + γ > 1.
Then, for any t ∈ (0, 1), I − tF is contractive with constant 1 − tτ where τ =
1 − √

(1 − η)/γ.

3. A string-averaging scheme for the MSSEP

Let the string J t
1 = (it1, it2, · · · , itγ(Jt

1)) be a finite nonempty subset of J1, for
every t = 1, 2, · · · , S1, where the length of the string J t

1, denoted by γ(J t
1), is

the number of elements in J t
1. Put T t

1 := Pit
γ(Jt

1)
· · ·Pit

2
Pit

1
, where Pit

l
= PCit

l

,

for l = 1, 2, · · · , γ(J t
1) and t = 1, 2, · · · , S1. Given a positive weight vector

β = (β1, β2, · · · , βS1) with
∑S1

t=1 βt = 1, we define the algorithmic mapping
P1 :=

∑S1
t=1 βtT

t
1 . We suppose that every element of J1 appears in at least

one of the strings J t
1. Analogously, for the family {Qj}j∈J2 , we can construct

the mapping P2 :=
∑S2

t=1 ηtT
t
2 where T t

2 := Pjt

γ(Jt
2)
· · ·Pjt

2
Pjt

1
, Pjt

l
= PQjt

l

for

t = 1, 2, · · · , S2, l = 1, 2, · · · , γ(J t
2) and η = (η1, η2, · · · , ηS2) is also a positive

weight vector such that
∑S2

t=1 ηt = 1.
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First, we need to prove the following lemma.

Lemma 3.1 z = [u, v] ∈ Γ if and only if (I − P1)u = (I − P2)v = 0 and
Au = Bv.

Proof. Clearly, when z = [u, v] ∈ Γ, we have that Au = Bv, u ∈ Ci and
v ∈ Qj for every i ∈ J1 and j ∈ J2. Consequently, for all t = 1, 2, · · · , S1 we
have that T t

1u = u and for t = 1, 2, · · · , S2, T t
2v = v. Consequently, (I−P1)u =

(I−P2)v = 0. Inversely, we have to prove that if z = [u, v] satisfies the equalities
then z ∈ Γ. Take any point [p, q] ∈ Γ. It is easy to see that

‖u − p‖2 = ‖P1u − p‖2 ≤
S1∑
t=1

βt‖T t
1u − p‖2

≤ ‖u − p‖2 −
S1∑
t=1

βt

γ(It)∑
l=1

‖U it
lu − U it

l−1u‖2,

and hence, ‖U it
lu−U it

l−1u‖2 = 0 for l = 1, 2, · · · , γ(J t
1), where U it

l = Pit
l
· · ·Pit

2
Pit

1

and U it
0 = I. Taking l = 1, we obtain that U it

1u = u, which together with the
case that l = 2 implies U it

2u = u. Repeating the process for l = 3, · · · , γ(J t
1), we

get that U it
lu = u for l = 3, · · · , γ(J t

1). Finally, U it
lu = u for l = 1, 2, · · · , γ(J t

1)
and t = 1, 2, · · · , S1. Since each element of J1 appears in at least one J t

1,
PCiu = u for each i ∈ J1. By the similar argument, we get that PQj v = v for
each j ∈ J2. From the last two equalities and Au = Bv it follows that z ∈ Γ.
This completes the proof. �

Now, we consider a string-averaging scheme, z1 = [x1, y1], x1 ∈ H1, y
1 ∈ H2,

and
xk+1 = P1(xk − γkA∗(Axk − Byk)),

yk+1 = P2(yk + γkB∗(Axk − Byk)),
(3.1)

where γk is chosen by

γk =
ρkf(xk, yk)

ak + εk
(3.2)

with ρk, f(x, y) and ak defined in (1.4) and an assumption:
(ε): {εk} is a bounded sequence of positive real numbers and has lim infk→∞ εk >
0.

Theorem 3.1 Let H1, H2 and H3 be real Hilbert spaces, let A and B be two
bounded linear mappings from H1 and H2 into H3, respectively, and let Ci and
Qj be two closed convex subsets in H1 and H2, respectively, for each i ∈ J1

and j ∈ J2. Assume that there holds assumption (ε). Then, the sequence
{zk = [xk, yk]}, defined by (3.1) and (3.2), as k → ∞, converges weakly to a
solution of (1.1).
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Proof. Let z = [p, q] ∈ Γ. Then, by Lemma 3.1, P1p = p, P2q = q and
Ap = Bq. Therefore, from (3.1) and the nonexpansivity of P1 with P2, we get
that

‖xk+1 − p‖2 = ‖P1(xk − γkA∗(Axk − Byk)) − P1p‖2

≤ ‖xk − p − γkA∗(Axk − Byk)‖2

= ‖xk − p‖2 − 2γk〈A∗(Axk − Byk), xk − p〉
+ γ2

k‖A∗(Axk − Byk)‖2

(3.3)

and
‖yk+1 − q‖2 = ‖P2(yk − γkA∗(Axk − Byk)) −P2q‖2

≤ ‖yk − q + γkB∗(Axk − Byk)‖2

= ‖yk − q‖2 + 2γk〈B∗(Axk − Byk), yk − q〉
+ γ2

k‖B∗(Axk − Byk)‖2.

(3.4)

Since Ap = Bq,

−〈A∗(Axk − Byk), xk − p〉 + 〈B∗(Axk − Byk), yk − q〉 =

−〈Axk − Byk, Axk − Ap〉 + 〈Axk − Byk , Byk − Bq〉 = −‖Axk − Byk‖2.
(3.5)

Therefore, from (3.3)-(3.5) we have that

‖zk+1 − z‖2 ≤ ‖zk − z‖2 + γ2
k(ak + εk) − 4γkf(xk, yk).

The last inequality together with (3.2) implies that

‖zk+1 − z‖2 ≤ ‖zk − z‖2 − ρk(4 − ρk)
f2(xk, yk)
ak + εk

, (3.6)

from which and (1.4), we obtain the boundedness of the sequence {zk} in H
and the existence of limk→∞ ‖zk − z‖. So, there exists limk→∞ ‖xk − p‖ and

lim
k→∞

f(xk, yk) = 0. (3.7)

Next, put

uk := xk + hk where hk = −γkA∗(Axk − Byk) and

vk := yk + gk where gk = γkB∗(Axk − Byk).

It is not difficult to verify that hk, gk converge strongly to zero as k → ∞. As
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in the proof of Lemma 3.1,

‖xk+1 − p‖2 = ‖P1u
k − p‖2 ≤

S1∑
t=1

βt‖T 1
t uk − p‖2

≤ ‖uk − p‖2 −
S1∑
t=1

βt

γ(It)∑
l=1

‖U it
l uk − U it

l−1uk‖2

≤ ‖xk − p‖2 + 2〈yk, xk − p〉 −
S1∑
t=1

βt

γ(Jt
1)∑

l=1

‖U it
luk − U it

l−1uk‖2,

and hence,
lim

k→∞
‖U it

luk − U it
l−1uk‖2 = 0 (3.8)

for l = 1, 2, · · · , γ(J t
1), where the mapping U it

l = Pit
l
· · ·Pit

2
Pit

1
and U it

0 = I.
By taking l = 1 in (3.8), we obtain that limk→∞ ‖U it

1uk − uk‖ = 0, which
together with the case that l = 2 implies limk→∞ ‖U it

2uk −uk‖ = 0. Repeating
the process for l = 3, · · · , γ(J t

1), we get that limk→∞ ‖U it
luk − uk‖ = 0 for

l = 3, · · · , γ(J t
1). Finally, limk→∞ ‖U it

luk − uk‖ = 0 for l = 1, 2, · · · , γ(J t
1)

and t = 1, 2, · · · , S1. Since each element of J1 appears in at least one J t
1,

limk→∞ ‖PCiu
k − uk‖ = 0 for each i ∈ J1. Noting limk→∞ hk = 0,

lim
k→∞

‖PCix
k − xk‖ = 0 ∀i ∈ J1. (3.9)

Similarly, we get that

lim
k→∞

‖PQj y
k − yk‖ = 0 ∀j ∈ J2. (3.10)

Since {zk} is bounded, there exists a subsequence {zkm} of {zk} such that it
converges weakly to a point z̃ = [x̃, ỹ] ∈ H , as m → ∞, where zkm = [xkm, ykm ].
Then, {xkm} and {ykm} converge weakly to the points x̃ ∈ H1 and ỹ ∈ H2,
respectively. From Lemma 2.1 with (3.9) and (3.10), we can conclude that
PCix̃ = x̃ and PQj ỹ = ỹ for all i ∈ J1 and j ∈ J2. On the other hand, as the
function f(x, y) is a convex non-negative function on H , from (3.7) we have
that

0 ≤ f(x̃, ỹ) ≤ lim inf
m→∞ f(xkm , ykm) = lim

k→∞
f(xk, yk) = 0.

Consequently, ‖Ax̃−Bỹ‖ = 0. By Lemma 2.1, z̃ ∈ Γ. By the similar argument
as the above, we can conclude that every weak cluster point of {zk} belongs
to Γ. By Lemma 2.4, all the sequence {zk} converges weakly to a point in Γ.
Thus, the proof is completed. �

Remarks.
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1. Taking S1 = S2 = 1 with γ(J t
1) = N and γ(J t

2) = M , we have the method,

xk+1 = PCN · · ·PC1(x
k − γkA∗(Axk − Byk)),

yk+1 = PQM · · ·PQ1(y
k + γkB∗(Axk − Byk)),

that is simpler than (1.6).
2. Taking S1 = N and S2 = M with γ(J t

1) = γ(J t
2) = 1 for every t, we get the

method,

xk+1 =
N∑

i=1

βiPCi(x
k − γkA∗(Axk − Byk)),

yk+1 =
M∑

i=1

ηjPQj (y
k + γkB∗(Axk − Byk)).

We see that the last method is different from (1.7).

4. A relaxed string-averaging scheme for the

MSSEP

In the previous string-averaging scheme, we assume that all the projections PCi

and PQj can be easily calculated, but in practice they are sometime difficult
to compute or even impossible. In this section, we give a relaxed variant for
algorithmic scheme (3.1)-(3.2). First, we assume that the convex subsets Ci

and Qj in this part satisfy the following assumptions:

(a1) The subset Ci for all i ∈ J1 is given by Ci = {x ∈ H1 : ci(x) ≤ 0}, where
ci : H1 −→ (−∞, +∞) is a convex function.

The subset Qj for all j ∈ J2 is given by Qj = {y ∈ H2 : qj(y) ≤ 0}, where
qj : H2 −→ (−∞, +∞) is a convex function.

(a2) For any x ∈ H1 and y ∈ H2, at least one of subdifferetial ξi ∈ ∂ci(x) and
θj ∈ ∂qj(y) can be computed, where ∂ci(x) and ∂qj(y) are the subdiffer-
entials of ci(x) and qj(y) at the points x and y, respectively,

∂ci(x) = {ξi ∈ H1 : ci(x′) ≥ ci(x) + 〈ξi, x
′ − x〉 for all x′ ∈ H1},

∂qj(y) = {θj ∈ H2 : qj(y′) ≥ qj(y) + 〈θj , y
′ − y〉 for all y′ ∈ H2}.

We define the following half-spaces:

Ck
i = {x ∈ H1 : ci(xk) + 〈ξk

i , xk − x〉 ≤ 0},
where ξk

i ∈ ∂ci(xk) for i ∈ J1, and

Qk
j = {y ∈ H2 : qj(yk) + 〈θk

j , yk − y〉 ≤ 0},
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where θk
j ∈ ∂qj(yk) for j ∈ J2.

Put T t,k
1 := P k

it

γ(Jt
1)
· · ·P k

it
2
P k

it
1
, where P k

it
l

= PCk

it
l

, for all l = 1, 2, · · · , γ(J t
1)

and every t = 1, 2, · · · , S1. We define the algorithmic mappingPk
1 :=

∑S1
t=1 βtT

t,k
1

with positive the weight vector β as in the previous section. We suppose also
that every element of J1 appears in at least one of the strings J t

1. In the similar
way, we get the algorithmic mapping Pk

2 :=
∑S2

t=1 ηtT
t,k
2 with the weight vector

η as in the previous section. By Lemma 3.1, if (I −Pk
1 )z = A∗(I −Pk

2 )Az = 0
then we have only that z ∈ ∩N

i=1C
k
i and Az ∈ ∩M

j=1Q
k
j . It is difficult to confirm

that z is a solution of (1.1). So, we consider the following relaxed algorithmic
scheme,

xk+1 = Pk
1 (xk − γkA∗(Axk − Byk)),

yk+1 = Pk
2 (yk + γkB∗(Axk − Byk)),

(4.1)

where γk is chosen by (3.2) with the same conditions on ρk and εk.
The following Lemma is essential in proving convergence.

Lemma 4.1 [25] Suppose h is a convex function on a Hilbert space H, then
it is subdifferentiable everywhere and its subdifferentials are uniformly bounded
subsets of H.

Lemma 4.1 shows that the subdifferentials are bounded on bounded sets.
Theorem 4.1 Let H1, H2, H3, A, B and Γ be as in Theorem 3.1. Let Ci and
Qj, for each i ∈ J1 and j ∈ J2, be closed convex subsets in H1 and H2, that be
defined by (a1) and (a2). Assume that there hold condition (ε) and (3.2). Then,
the sequence {zk}, defined by (4.1), converges weakly to a solution of (1.1) as
k → ∞.

Proof. Take a point z = [p, q] ∈ Γ. Then, Ap = Bq. Since Ci ⊆ Ck
i , Qj ⊆ Qk

j ,
we have p = Pip = P k

i p, q = Pjq = P k
j q for all i ∈ J1, j ∈ J2 and k ≥ 1. By

the similar argument as in the proof of Theorem 3.1, we get inequality (3.6).
Consequently, {zk}, defined by (4.1) with zk = [xk, yk], is bounded with the
limit (3.7). Moreover, we also get that

lim
k→∞

‖P k
i xk − xk‖ = 0 ∀i ∈ J1 and lim

k→∞
‖P k

j yk − yk‖ = 0 ∀j ∈ J2. (4.3)

Next, from the definitions of Ck
i and Qk

j , it follows that

ci(xk) ≤ ‖ξk
i ‖‖(I − P k

i )xk‖,
qj(yk) ≤ ‖θk

j ‖‖(I − P k
j )yk‖. (4.4)

Since {zk} is bounded, {ξk
i }, {θk

j } are bounded and there exist subsequences
{xkl} of {xk} and {ykl} of {yk} such that {xkl} and {ykl} converge weakly to
a point x̃ ∈ H1 and a point ỹ ∈ H2, respectively, with f(x̃, ỹ) = 0. Thus, from
the bounded property of {ξk

i } and {θk
j } together with (4.3) and (4.4) it follows
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that ci(x̃) ≤ 0 and qj(ỹ) ≤ 0 for all i ∈ J1 and j ∈ J2. It means that x̃ ∈ Γ.
Analogously, we have that every weak cluster point of {zk} belongs to Γ, and
hence, by Lemma 2.4, all the sequence {zk} converges weakly to a point in Γ.
This completes the proof. �

5. A steepest-descent string-averaging scheme
for the MSSEP

In order to obtain a strong convergence sequence from (3.1)-(3.2), we consider
their combination with the steepest-descent method [27] for monotone map-
pings in Hilbert spaces, that was developed further in [26], [27] and [29] for the
problem of common fixed points for a family of nonexpansive mappings.

Our scheme is defined by z1 = [x1, y1] with x1 ∈ H1 and y1 ∈ H2, any
points, and

uk = P1(xk − γkA∗(Axk − Byk)),

xk+1 = (I − tkF1)uk,

vk = P2(yk + γkB∗(Axk − Byk)),

yk+1 = (I − tkF2)vk,

(5.1)

where Fi is an ηi-strongly monotone and γi-strictly pseudocontractive mapping
on Hi such that ηi + γi > 1 for i = 1, 2 and η + γ > 1 where η = min{η1, η2}
and γ = max{γ1, γ2}.

Clearly, method (5.1) can be re-written in the compact form,

zk+1 = (I − tkF )P(I − γkG∗G)zk, (5.2)

where F = [F1, F2] : H → H is η-strongly monotone and γ-strictly pseudocon-
tractive and P = [P1,P2].

We have the following results.

Theorem 5.1 Let H1, H2, H3, A, B, Ci and Qj with Γ be as in Theorem 2.1.
Assume that there hold condition (ε) and (3.4). Then, the sequence {zk}, de-
fined by algorithmic scheme (5.2), as k → ∞, converges strongly to the solution
z∗ ∈ Γ, satisfying the variational inequality problem

〈Fz∗, z∗ − z〉 ≤ 0 ∀z ∈ Γ.

Proof. First, we prove that {zk}, defined by algorithmic scheme (5.2) is
bounded. Put sk := P(I − γkG∗G)zk. From the proof of Theorem 3.1, we
get

‖sk − z‖2 ≤ ‖zk − z‖2 − ρk(4 − ρk)
f2(xk, yk)
ak + εk

≤ ‖zk − z‖2. (5.3)
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Then, by virtue of Lemma 2.5 and (5.3),

‖zk+1 − z‖ = ‖(I − tkF )sk − (I − tkF )z − tkFz‖
≤ (1 − tkτ )‖sk − z‖ + tk‖Fz‖
≤ (1 − tkτ )‖zk − z‖ + tk‖Fz‖
≤ max{‖z1 − z‖, ‖Fz‖/τ},

that means the boundedness of {zk}, and

‖zk+1 − z‖2 = ‖(I − tkF )sk − (I − tkF )z − tkFz‖2

≤ (1 − tkτ )‖zk − z‖2 − ρ
f2(xk, yk)
ak + εk

− 2tk〈Fz, zk+1 − z〉.
(5.4)

where ρ is some positive constant such that (1 − tkτ )ρk(2 − ρk) ≥ ρ for all
k ≥ 1. We need only to consider two cases.
Case 1 ‖zk+1 − z‖ ≤ ‖zk − z‖ for all k ≥ k0, large enough.

Then, there exists limk→∞ ‖zk − z‖. From (5.4) it follows that

0 ≤ ρ
f2(xk, yk)
ak + εk

≤ ‖zk − z‖2 − ‖zk+1 − z‖2 + 2tk‖Fz‖‖zk+1 − z‖. (5.5)

So, from (5.5), the existence of limk→∞ ‖zk − z‖ with the boundedness of {zk}
and property of {εk}, it follows that limk→∞ f(xk, yk) = 0. As in the proof
of Theorem 3.1, we have that every weak cluster point of {zk} belongs Γ.
Therefore,

lim sup
k→∞

〈Fz∗, z∗ − zk〉 ≤ 0, and hence, lim sup
k→∞

〈Fz∗, z∗ − zk+1〉 ≤ 0.

Now, from (5.4) we get that

‖zk+1 − z∗‖2 ≤ (1 − tkτ )‖zk − z∗‖2 + 2tk〈Fz∗, z∗ − zk+1〉.
By Lemma 2.2, ‖zk − z∗‖ → 0 as k → ∞.
Case 2. There exists a subsequence {kl} of {k} such that ‖zkl−z‖ < ‖zkl+1−z‖
for all l ≥ 0.

Hence, by Lemma 2.3, there exists a nondecreasing sequence {mk} ⊆ {k}
such that mk → ∞,

‖zmk − z‖ ≤ ‖zmk+1 − z‖ and ‖zk − z‖ ≤ ‖zmk+1 − z‖ (5.6)

for each k ≥ 1. Then, from (5.4) and the first inequality in (5.6), we know that

‖zmk − z‖2 ≤ 2
τ
〈Fz, z − zmk+1〉. (5.7)
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In this case, instead of (5.5), we get that

0 ≤ ρ
f2(xmk , ymk )
amk + εmk

≤ ‖zmk − z‖2 − ‖zmk+1 − z‖2 + 2tmk‖Fz‖‖zmk+1 − z‖.

and hence, limk→∞ f(xmk , ymk ) = 0. By the similar argument as in the proof
for the case 1, any cluster point of {xmk} belongs to Γ. Thus,

lim sup
k→∞

〈Fz∗, z∗ − zmk+1〉 ≤ 0,

which together with (5.7) implies that ‖zmk − z∗‖ → 0 as k → ∞. Now,
from (5.4) with k and z replaced, respectively, by mk and z∗ it follows that
‖zmk+1 − z∗‖ → 0. Noting the second inequality in (5.6), ‖zk − z∗‖ → 0. The
proof is completed. �

Remark We take f = aI + (1 − a)z with a fixed z ∈ H and a fixed number
a ∈ (0, 1). It is well known in [26] that I − f is an η-strongly monotone and
γ-strictly pseudocontractive mapping in H such that η + γ > 1. Replacing
F in (5.2) by the mapping I − f , we obtain, instead of (1.9), the Halpern
string-averaging scheme for the MSSEP,

zk+1 = tkz + (1 − tk)P(I − γkG∗G)zk

with new tk := tk(1 − a), that converges strongly to a point in Γ without
condition (t′).

6. Numerical Examples

For computation, we consider the case H1 = E
2, H2 = E

3 and H3 = E
4; A and

B are given bellow.

A =

⎡
⎢⎢⎣

0.1 0.2
0.2 0.4
0.3 0.6
0 0.1

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1 0 0
0 0.1 0.2
0 0.2 0.4
0 0.1 0

⎤
⎥⎥⎦ .

We consider MSSEP (1.1) with Ci = {x ∈ E
2 : 〈ai, x〉 ≤ βi}, where ai =

(1/i;−1) and βi = 0, for i = 1, · · · , 10, and Qj = {y ∈ E
3 : ‖y−aj‖ ≤ 1}, where

aj = (1/(j+1); 1/(j+1); 1/(j+1)) for j = 1, · · · , 15. Clearly, problem (1.1) with
the data above has many solutions. So, in order to verify the convergence to a
solution, that we do not know, for algorithmic scheme (3.1)–(3.2), we use the
errors: error1 := ‖xk+1−xk‖/‖xk‖ and error2 := ‖yk+1−yk‖/‖yk‖ with ρk =
3 + 1/(k + 1), εk = 1 for all k ≥ 1, x1 = (−3.0; 3.0) and y1 = (−2.0;−2.5; 2.0).
Put P̃1 = (PC5 · · ·PC1 +PC10 · · ·PC6)/2 and P̃2 = (PQ5 · · ·PQ1 +PQ10 · · ·PQ6 +
PQ15 · · ·PQ11)/3. The numerical results with different P1 and P2 are given in
the following tables.
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k error1 error2 k error1 error2
10 0.0012953412 0.0084375860 100 0.0000584719 0.0004042637
20 0.0005700299 0.0049270390 200 0.0000189949 0.0001356754
30 0.0003496738 0.0030891459 300 0.0000100827 0.0000746127
40 0.0002398504 0.0020088602 400 0.0000064987 0.0000495669
50 0.0001747594 0.0013715507 500 0.0000046404 0.0000363808

Table 1. Method (3.1)–(3.2) with P1 =
∑10

i=1 PCi/10 and P2 =
∑15

j=1 PQj /15

k error1 error2 k error1 error2
10 0.0009321189 0.0054130662 100 0.0000422591 0.0002421531
20 0.0003776241 0.0021946777 200 0.0000164338 0.0000934767
30 0.0002192796 0.0012719729 300 0.0000095113 0.0000504397
40 0.0001483827 0.000858825440 400 0.0000064435 0.0000367375
50 0.0001093893 0.000631803850 500 0.0000047357 0.0000272121

Table 2. Method (3.1)–(3.2) with P1 = PC10 · · ·PC1 and P2 = PQ15 · · ·PQ1

k error1 error2 k error1 error2
10 0.0008866128 0.0049620475 100 0.0000421089 0.0002325655
20 0.0003674546 0.0020570113 200 0.0000164619 0.0000903616
30 0.0002152168 0.0012024210 300 0.0000095401 0.0000523899
40 0.0001463201 0.0008157362 400 0.0000064555 0.0000356467
50 0.0001081992 0.0006019969 500 0.0000047286 0.0000263883

Table 3. Method (3.1)–(3.2) with P1 = P̃1 and P2 = P̃2

k error1 error2 k error1 error2
10 0.0577563243 0.0067677696 100 0.0070196412 0.0008262614
20 0.0234714242 0.0041274345 200 0.0038312744 0.0003778241
30 0.0181178430 0.0028980667 300 0.0027201046 0.0002397887
40 0.0147753768 0.0021985851 400 0.0021569324 0.0001743768
50 0.0124738808 0.0017529726 500 0.0018126310 0.0001363898

Table 4. Method (3.1)–(3.2) with P1 =
∑10

i=1 PCi/10 and P2 = P̃2

Now, for testing algorithmic scheme (4.1) we take H1 = E
2, H2 = H3 = E

3

and A and B are defined as the above with deleting fourth rows. The sets Ci

and Qj are given by

C1 = {x ∈ E
2 : x2

1/2 + x2 ≤ 0},
C2 = {x ∈ E

2 : x1 + x2
2/2 − 1 ≤ 0},

C3 = {x ∈ E
2 : x1 + x2 − 3 ≤ 0},

C4 = {x ∈ E
2 : x2

1/2 + x2
2/2 − 4 ≤ 0}
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and
Q1 = {y ∈ E

3 : y2
1/2 + y2 + y3 − 1 ≤ 0},

Q2 = {y ∈ E
3 : y1 + y2

2/2 + y3 − 2 ≤ 0},
Q3 = {y ∈ E

3 : y2
1/2 + y2

2/2 + y2
3/2− 3 ≤ 0}.

By using algorithmic scheme (4.1) with the same data as the above and a new
value ρk = 0.4 + 1/(k + 2), we obtain the following numerical tables, Tables 5
and 6.

k error1 error2 k error1 error2
10 0.0355614672 0.0119739663 100 0.0002863193 0.0007033014
20 0.0090352165 0.0056429197 200 0.0001688489 0.0001306101
30 0.0032744843 0.0039105849 300 0.0000888721 0.0000497822
40 0.0013332436 0.0029413076 400 0.0000560462 0.0000275918
50 0.0005198815 0.0022639672 500 0.0000398194 0.0000181807

Table 5. Method (4.1) with Pk
1 =

∑4
i=1 P k

i /4 and Pk
2 =

∑3
j=1 P k

j /3

k error1 error2 k error1 error2
10 0.0311695625 0.0152272465 100 0.0000067994 0.0003112079
20 0.0064277037 0.0069224575 200 0.0000059154 0.0000846789
30 0.0019876049 0.0036999871 300 0.0000021392 0.0000427758
40 0.0007273143 0.0021601957 400 0.0000005677 0.0000270271
50 0.0002890575 0.0013644448 500 0.0000001846 0.0000191596

Table 6. Method (4.1) with Pk
1 = P k

4 · · ·P k
1 and Pk

2 = P k
3 · · ·P k

1
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