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Abstract

Based on the definition of Hamiltonian cycles given by Katona and

Kierstead, we provide a construction of Hamiltonian decompositions of

the complete 4-partite 3-uniform hypergraph K
(3)

4(2m) , where 2m is the

size of each partite set.

1 Introduction

A Hamiltonian decomposition of a hypergraph is a partition of its hyperedge

set into mutually disjoint Hamiltonian cycles. The definition of a Hamiltonian

cycle can be extended to hypergraphs in various ways. The definition in this

paper based on a Hamitonicity of cycles for k -uniform hypergraphs H(V,E)
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of order n given by Katona and Kierstead [5] : a Hamiltonian cycle of H is

a cyclic ordering C = (v1 v2 . . . vn) of all n elements of V such that k

consecutive vertices form a hyperedge in E .

The existence of problem of Hamiltonian decompositions have been studied

widely for complete 3-uniform hypergraphs, K
(k)
n , for example, K

(4)
9 and K

(3)
n

for some admissible n ≤ 46, n = 2m and m ≥ 2 (see [1, 6, 4, 8]). Additionally,

several authors studied the problem for the complete multipartite k -uniform

hypergraphs, defined as follows :

Definition 1.1. A complete multipartite k -uniform hypergraph K
(k)
n1,n2,...,nt or

K
(k)
n1,n2,...,nt(V1, V2, . . . , Vt) is a hypergraph with vertex set V = V1∪V2∪ · · ·∪Vt

where |Vi| = ni for all i ∈ {1, 2, . . . , t} , and

E(H) = {e : e ⊆ V, |e| = k and |e ∩ Vi| < k for i ∈ {1, 2, . . . , t}}.

In particular, if ni = n for all i ∈ {1, 2, . . . , t} , then K
(k)
n, n, . . . n︸ ︷︷ ︸

t

is denoted

by K
(k)
t(n) .

In literature, the problem of Hamiltonian decompositions of K
(k)
t(n) has been

investigated only for the case k = 3 and t = 2 and 3. Wang and Jirimutu [7]

studied on K
(3)
n,n when n is a prime number in 2001. Later on, Xu and Wang

[8] provided a complete study for all n ≥ 2 in 2002. The study for complete

tripartite 3-uniform hypergraphs, K
(3)
n,n,n , was also completed by Boonklurb et

al. [2] in 2015. Continuing along this line, we are interested in the case t = 4

and n is any even positive integer. In other words, we provide a construction

of Hamiltonian decompositions of K
(3)
4(2m) for all positive integer m .

2 Hamiltonian decompositions of K
(3)
4(2m)

We first classify hyperedges of K
(3)
4(2m) into two types. Let e be a hyperedge

of K
(3)
4(2m) , if e contains at most one vertex from each partite set, e is then

called a hyperedge of Type 1, otherwise (that is e contains two vertices from

a partite set) e is called a hyperedge of Type 2. The following notations will

be used for the rest of the paper unless state otherwise.
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Notations

2m is the size of each partite set,

[n] is the set of integers {1, 2, . . . , n} ,

Ti(K(3)
4(2m)) is the subhypergraph of K

(3)
4(2m) which consists of all hyper-

edges of Type i for i = 1, 2,

the vertex set of K
(3)
4(2m) is V1∪V2∪V3∪V4 where Vi = {ai1, ai2, . . . , ai2m}

for i ∈ {1, 2, 3, 4} ,

E(H) is the hyperedge set of hypergraph H .

We will present the construction by decomposing T1(K
(3)
4(2m)) and T2(K

(3)
4(2m))

into Hamiltonian cycles in Sections 2.1 and 2.2 separately.

Recall that a Hamiltonian cycle C of K
(3)
4(2m) is a cycle in which any three

consecutive vertices form a hyperedge. In our construction, we write a cycle C

as (P1 P2 . . . Ps) if vertices along the cycle C are partitioned into paths Pj

(a sequence of vertices) along this cycle.

On top of that, each hyperedge in C is called an inline hyperedge if it is a

hyperedge within a path or, a joint hyperedge if it contains vertices from some

two consecutive paths.

One of the main tools for our construction is a 1-factorization of a graph

which is a partition of a graph into 1-factors (1-regular spanning subgraphs).

Although, graphs are 2-uniform hypergraphs, we use the usual notations of

graphs such as Kn and Kn,n for K
(2)
n and K

(2)
n,n , respectively. Also, we denote

a complete graph Kn on the vertex set V by Kn(V ). The following are classic

results published first time in [3].

Theorem 2.1. [3]

(i) The complete graph Kn has a 1-factorization whenever n is even,

(ii) The complete bipartite graph Kn,n has a 1-factorization for all positive

integer n .

In this paper, we refer to a 1-factor of a graph as its edge set. In particular,

if a 1-factor F of K2m([2m]) is written as {{j, f(j)} : j ∈ {1, 2, . . . ,m}} , then

the vertex set [2m] is relabeled to be {1, 2, . . . , 1, f(1), f(2), . . . , f(m)} .
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2.1 Hamiltonian decompositions of T1(K
(3)
4(2m))

This section considers all hyperedges of Type 1. We establish a stronger

result by giving a Hamiltonian decomposition of the subhypergraph T1(K
(3)
4(n))

for all positive integers n , instead of even ones. The construction uses a 1-

factorization of Kn,n([n], [n]) . In Theorem 2.2, the construction creates each

Hamiltonian cycle consisting of n paths of order four; each path contains ex-

actly one vertex from each partite set.

Theorem 2.2. The hypergraph T1(K
(3)
4(n)) has a Hamiltonian decomposition

for all positive integer n .

Proof. Let F be a 1-factorization of the complete bipartite graph Kn,n([n], [n])

which exists by Theorem 2.1. In this proof, we will construct a collection

C = {Ct(F ) : t ∈ {0, 1, . . . , n− 1}, F ∈ F}

which will be later showed that it is a Hamiltonian decomposition of T1(K
(3)
4(n)).

Let F = {{i, f(i)} : i ∈ {1, 2, . . . , n}} be any 1-factor in F . There are a

total of n Hamiltonian cycles in C constructed from F , where each cycle is

composed of n paths of order four as follows. For t ∈ {0, 1, . . . , n − 1} , the

cycle Ct(F ) = (P t1 P
t
2 · · · P tn) such that for j ∈ {1, 2, . . . , n} ,

P tj = a1j+t a2f(j+t) a3j a4f(j)

where j + i is considered in the modulus n . Thus,

Ct(F ) = ( a11+t a2f(1+t) a31 a4f(1)
a12+t a2f(2+t) a32 a4f(2)

...
...

...
...

a1n−1+t a2f(n−1+t) a3n−1 a4f(n−1)
a1n+t a2f(n+t) a3n a4f(n) ).

Since F is a 1-factor, all 4n vertices in Ct(F ) are distinct. This yields that

Ct(F ) is a Hamiltonian cycle of K
(3)
4(n) for all t . Besides, three consecutive

vertices in Ct(F ) always come from three different partite sets; so, Ct(F ) is a

Hamiltonian cycle of T1(K
(3)
4(n)).
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Now, we will claim that the collection C is a decomposition of T1(K
(3)
4(n)).

Denote the set of all hyperedges of all cycles in C by E(C ). Hence E(C )

contains a total of 4n3 hyperedges of Type 1 counted repeatly. Since the

number of hyperedges of Type 1 in K
(3)
t(n) is also 4n3 , it suffices to show that

each hyperedge of Type 1 in K
(3)
t(n) is covered at least once in E(C ).

Since there are only four possible ways to choose three partite sets from the

four partite sets of K
(3)
4(n) , we can classify hyperedges of Type 1 into four groups

depending on partite sets containing their vertices. First, consider hyperedges

of Type 1 containing vertices from V1, V2 and V3 . Let e be such a hyperedge

written e = {a1u, a2v, a3w} where u, v, w ∈ [n] . We claim that e is covered at

least once in E(C ). Now, consider u and v as vertices from two distinct

partite sets of Kn,n([n], [n]) . Since F is a 1-factorization of Kn,n([n], [n]) ,

there exists unique 1-factor F ′ = {{j, f ′(j)} : j ∈ {1, 2, . . . ,m}} ∈ F such

that {u, v} = {i, f ′(i)} for some i . Then e = {a1i , a2f ′(i), a
3
w} . In Ct(F

′) =

(P
t

1 P
t

2 · · · P
t

n), the first inline hyperedge of each path P
t

j for j ∈ {1, 2, . . . ,m}
is {a1j+t, a2f ′(j+t), a

3
j} . Then

⋃n
t=1E(Ct(F

′)) contains {{a1k, a2f ′(k), a
3
`} : k, ` ∈

{1, 2, . . . , n}}. Hence e ∈
⋃n
t=1E(Ct(F

′)) ⊆ E(C ) as claimed.

If e is a hyperedge of Type 1 with the partite sets {V2, V3, V4} , {V3, V4, V1}
or {V4, V1, V2} , then we can prove in a similar fashion that e is covered

by at least one cycle in E(C ), say Ct(F ) = (P t1 P t2 · · · P tn), where F =

{{i, f(i)} : i ∈ {1, 2, . . . , n}} ; it is provided by the fact that each path P tj
also contains an inline hyperedge {a2f(j+t), a

3
j , a4f(j)}, and there are ex-

actly two joint hyperedges connecting P tj and P tj+1 , {a3j , a4f(j), a
1
j+1+t} and

{a4f(j), a
1
j+1+t, a

2
f(j+1+t)}.

Therefore C is a Hamiltonian decomposition of T1(K
(3)
4(n)). 2

2.2 Hamiltonian decompositions of T2(K
(3)
4(2m))

In this section, we decompose the subhypergraph T2(K
(3)
4(2m)) containing all

hyperedges of Type 2. The construction uses the following tools :

the collection of 4-tuples D = {(1, 2, 3, 4), (1, 3, 4, 2), (1, 4, 2, 3)} and

a 1-factorization F of K2m([2m]) which always exists by Theorem

2.1.
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Now, we aim to establish the following two collections of cycles in K
(3)
4(2m)

which are depending on the parity of m ,

C = {Ct(D,F ) : t ∈ {0, 1, . . . ,m− 1}, D ∈ D , and F ∈ F} for odd m , and

C = {Ct(D,F ), Ct(D,F ) : t ∈ {0, 1, . . . , m2 − 1}, D ∈ D , and F ∈ F} for even

m.

Thus, each collection will contain 3m(2m−1) cycles. For the construction,

let D be any tuple in D , and F any 1-factor of K2m([2m]) in F , written

D = (p, q, r, s) and F = {{j, f(j)} : j ∈ {1, 2, . . . ,m}},

consequently, the vertex set of K2m is relabel to be {1, 2, . . . , 1, f(1), f(2), . . . ,

f(m)} . We will construct m Hamiltonian cycles of T2(K
(3)
4(2m)) in C from D

and F when m is odd in Section 2.2.1, namely

C0(D,F ), C1(D,F ), . . . , Cm−1(D,F ), and

m Hamiltonian cycles of T2(K
(3)
4(2m)) in C from D and F when m is even in

Section 2.2.2, namely

C0(D,F ), C1(D,F ), . . . , Cm
2 −1(D,F ), C0(D,F ), C1(D,F ), . . . , C m

2 −1(D,F ).

Then we later show that both collections are Hamiltonian decompositions of

T2(K
(3)
4(2m)).

2.2.1 m is odd.

Let m be an odd integer. We define Ct(D,F ) where t ∈ {0, 1, . . . ,m− 1}
to consist of two paths of order 4m , written

Ct(D,F ) = (P t1 P t2)

such that for j = 1, 2,

P tj = ax1+t axf(1+t) ayf(m+t) aym+t

ax2+t axf(2+t) ayf(m−1+t) aym−1+t
...

...
...

...

axm+1
2 +t

ax
f(m+1

2 +t)
ay
f(m+1

2 +t)
aym+1

2 +t

...
...

...
...

axm−1+t axf(m−1+t) ayf(2+t) ay2+t

axm+t axf(m+t) ayf(1+t) ay1+t,
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where

(x, y) =

 (p, q), if j = 1,

(r, s), if j = 2.

We say that Ct(D,F ) is the tth rotation of C0(D,F ). In other words,

C0(D,F ) is an initial cycle which is rotated m− 1 times to create additional

m− 1 cycles.

Example 2.3. An illustration of C0(D,F ) which are in the construction of

K
(3)
4(2m) when m = 5 , D = (1, 3, 4, 2) and F = {{j, f(j)} : j ∈ {1, 2, 3, 4, 5}} .

In Figure 1, each vertex ax` in the cycle C0(D,F ) is represented by its subscript

` . The solid lines indicate two consecutive vertices in the same path, while the

dash lines indicate two consecutive vertices from different paths.

V1

1 f(1)

2 f(2)

3 f(3)

4 f(4)

5 f(5)

V3

f(5) 5

f(4) 4

f(3) 3

f(2) 2

f(1) 1

V4

1 f(1)

2 f(2)

3 f(3)

4 f(4)

5 f(5)

V2

f(5) 5

f(4) 4

f(3) 3

f(2) 2

f(1) 1

Figure 1: C0(D,F ) of T2(K
(3)
4(10)).

Lemma 2.4. Let D ∈ D , F ∈ F and t ∈ {0, 1, . . . ,m − 1} . Ct(D,F ) is a

Hamiltonian cycle of T2(K
(3)
4(2m)) .

Proof. Write D = (p, q, r, s) ∈ D , we have that P t1 consists of 4m vertices from

Vp and Vq and, P t2 consists of 4m vertices from Vr and Vs . Since (p, q, r, s)

is a permutation of {1, 2, 3, 4} and F is a 1-factor of K2m , the 8m vertices

in Ct(D,F ) are all distinct. Furthermore, the construction yields that any

three consecutive vertices in Ct(D,F ) are always from only two partite sets.

Therefore all hyperedges in Ct(D,F ) are of Type 2. 2

Next, let us observe a certain property of hyperedges in T2(K
(3)
4(2m)). Let

e be a hyperedge in T2(K
(3)
4(2m)), say e contains two vertices from Vx and one

vertex from Vy where x 6= y , written e = {axu, axv , ayw} . Now consider u, v as
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vertices in K2m([2m]) . Since F is a 1-factorization of K2m([2m]) , there exists

unique F = {{j, f(j)} : j ∈ {1, 2, . . . ,m}} ∈ F such that {u, v} = {i, f(i)}
for unique i . In such vertex set relabeled by F , we also consider w as another

vertex, then there exists unique j such that w = j or f(j). Thus e must be

one of the followings :

{axi , axf(i), a
y
j} or {axi , axf(i), a

y
f(j)}.

Consequently, given two partite sets in order, we can define the length of

each hyperedge of Type 2 from such partite sets as follows.

Definition 2.5. Let (x, y) ∈ {(p, q) : p, q ∈ {1, 2, 3, 4}, p 6= q} and e a hy-

peredge of Type 2 with two partite sets Vx and Vy . Then there exist unique

F = {{j, f(j)} : j ∈ {1, 2, . . . ,m}} ∈ F and unique i, j ∈ {1, 2, . . . ,m} such

that e can be written in one of the following four distinct forms,

{axi , axf(i), a
y
j}, {a

x
i , a

x
f(i), a

y
f(j)}, {a

y
j , a

y
f(j), a

x
i }, and {ayj , a

y
f(j), a

x
f(i)}.

Define the length with respect to (x, y) of hyperedge e by

L(x,y)(e) =

 i− j, if e = {axi , axf(i), a
y
j} or {ayj , a

y
f(j), a

x
i },

(i− j)′, if e = {axi , axf(i), a
y
f(j)} or {ayj , a

y
f(j), a

x
f(i)}.

where i− j and (i− j)′ are considered in the modulus m . Then there are 2m

possible lengths in {0, 1, . . . , m− 1, 0′, 1′, . . . , (m− 1)′} denoted by L .

Moreover, in the construction, as the partite sets of vertices are determined

by D ∈ D , we consider the length of hyperedges in Ct(D,F ) according to D

as follows.

Definition 2.6. Let D = (p, q, r, s) ∈ D , F ∈ F and e ∈ Ct(D,F ). Then e

is a hyperedge of Type 2 with Vx and Vy for some (x, y) ∈ {(p, q), (q, r), (r, s),
(s, p)} . The length of a hyperedge e is L(x,y)(e).

Example 2.7. Figure 2 illustrates the lengths of hyperedges in the cycle

C0(D,F ) in Example 2.3. As each three consecutive vertices along the cycle

form a hyperedge, we label its length at the middle vertex of such hyperedge.

Definition 2.8. A hyperedge with 〈p, q〉-partite sets is a hyperedge of Type 2

containing two vertices in Vp and one vertex in Vq .
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V1

0 1′

2 3′

4 0′

1 2′

3 4′

V3

1′ 2

3′ 4

0′ 1

2′ 3

4′ 0

V1

0 1′

2 3′

4 0′

1 2′

3 4′

V3

1′ 2

3′ 4

0′ 1

2′ 3

4′ 0

Figure 2: Lengths of hyperedges in C0(D,F ) of T2(K
(3)
4(10)).

The next lemma discusses the lengths of hyperedges in C0(D,F ), which

yields the same result for other cycles in C as a rotation of an initial cycle

preserves the lengths of hyperedges in a new cycle.

Lemma 2.9. Let D = (p, q, r, s) ∈ D , F ∈ F , ID = {(p, q), (r, s)} and JD =

{(q, r), (s, p)} . The cycle C0(D,F ) consists of the following :

(i) for (x, y) ∈ ID , one inline hyperedge with 〈x, y〉-partite sets of length

λ , and one inline hyperedge with 〈y, x〉-partite sets of length λ , for each

λ ∈ L \ {0} ,

(ii) for (x, y) ∈ JD , one joint hyperedge with 〈x, y〉-partite sets of length 0 ,

and one joint hyperedge with 〈y, x〉-partite sets of length 0 .

Proof. Let F ∈ F , written F = {{j, f(j)} : j ∈ {1, 2, . . . ,m}}. Let e1, e2, . . . ,

e8m be 8m hyperedges around the cycle C0(D,F ) orderly, beginning with the

first four inline hyperedges e1 = {ap1, a
p
f(1), a

q
f(m)}, e2 = {apf(1), a

q
f(m), a

q
m}, e3 =

{aqf(m), a
q
m, a

p
2} , e4 = {aqm, a

p
2, a

q
f(2)} and so on. Note that e4m−1, e4m, e8m−1

and e8m are joint hyperedges while the others 8m − 4 hyperedges are inline

hyperedges.

By our construction, the lengths of inline hyperedges of P 0
1 and P 0

2 have

the same spectrum. In particular, for ` ∈ {1, 2, . . . , 4m− 2} ,

L(p,q)(e`) = L(r,s)(e4m+`).

For ` ∈ {4m−1, 4m} , e` and e4m+` are joint hyperedges satisfying L(q,r)(e`) =

L(s,p)(e4m+`). Then it suffices to determine the lengths the first 4m hyperedges.
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It is clear that L(q,r)(e4m−1) = 0 and L(q,r)(e4m) = 0, that is, the lengths of

joint hyperedges are all 0. Thus (ii) is proved.

For other hyperedges, Table 1 reveals the length of inline hyperedge e`

where ` ∈ {1, 2, . . . , 4m− 2} .

e4d+k where d ∈ {0, 1, . . . ,m− 1} and 4d+ k ≤ 4m− 2

k e4d+k L(p,q)(e4d+k)

1 {ap1+d, apf(1+d), aqf(m−d)} (1 + 2d (mod m))′

2 {apf(1+d), aqf(m−d), aqm−d} (1 + 2d (mod m))′

3 {aqf(m−d), aqm−d, ap2+d} 2 + 2d (mod m)

4 {aqm−d, ap2+d, apf(2+d)} 2 + 2d (mod m)

Table 1: Lengths of e1, e2, . . . , e4m−2 .

With some abuse of notation, we refer to (λ + 2)′ as λ′ + 2 . Then it can be

noticed further that the sequence of the lengths of inline hyperedges satisfies a

recurrence relation

L(p,q)(e`) = L(p,q)(e`−4) + 2

for ` ∈ {5, 6, . . . , 4m− 2} where L(p,q)(e1) = 1′ , L(p,q)(e2) = 1′ , L(p,q)(e3) =

2, L(p,q)(e4) = 2.

Now all inline hyperedges with 〈p, q〉-partite sets in C0(D,F ) are hyper-

edges e` for all ` ≡ 0, 1 (mod 4) and ` ≤ 4m−1. Since the modulus m is odd,

the recurrence relation yields that the lengths of such 2m−1 inline hyperedges

span the set L \ {0} (see Tables 2 and 3). That is,

{L(p,q)(e`) : ` ≡ 0, 1 (mod 4), ` ∈ {0, 1, . . . , 4m− 2}} = L \ {0}.

` 1 5 9 · · · m−3
2

m+1
2

m+9
2 · · · 4m− 7 4m− 3

L(p,q)(e`) 1′ 3′ 5′ · · · (m− 2)′ 0′ 2′ · · · (m− 3)′ (m− 1)′

Table 2: The lengths of m inline hyperedges in {e` : ` ≡ 1 (mod 4), ` ∈
{0, 1, . . . , 4m− 2}} .

Similarly, inline hyperedges with 〈q, p〉-partite sets in C0(D,F ) are hyper-

edges e` for all ` ≡ 2, 3 (mod 4) and ` ≤ 4m − 2 which also have lengths
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` 4 8 12 · · · m−1
2

m+7
2

m+15
2 · · · 4m− 8 4m− 4

L(p,q)(e`) 2 4 6 · · · m− 1 1 3 · · · m− 4 m− 2

Table 3: The lengths of m − 1 inline hyperedges in {e` : ` ≡ 0 (mod 4), ` ∈
{0, 1, . . . , 4m− 2}} .

spanning the set L \ {0} as follows.

{L(p,q)(e`) : ` ≡ 2, 3 (mod 4), ` ∈ {0, 1, . . . , 4m− 2}} = L \ {0}.

Hence for λ ∈ L \ {0} , C0(D,F ) contains exactly one hyperedge with 〈p, q〉-
partite sets of length λ , and one hyperedge with 〈q, p〉 -partite sets of length

λ . Therefore (i) is proved. 2

Theorem 2.10. The subhypergraph T2(K
(3)
4(2m)) has a Hamiltonian decompo-

sition when m is odd.

Proof. Let D = {(1, 2, 3, 4), (1, 3, 4, 2), (1, 4, 2, 3)} , F a 1-factorization of K2m

and

C = {Ct(D,F ) : t ∈ {0, 1, . . . ,m− 1}, D ∈ D and F ∈ F}.

By Lemma 2.4, C is a collection of Hamiltionian cycles of T2(K
(3)
4(2m)). It

remains to show that C is a decomposition of T2(K
(3)
4(2m)).

First, we consider an essential property of D . The following two collections

I and J contain ordered pairs induced by D ;

I = {(p, q), (r, s) : (p, q, r, s) ∈ D} = {(1, 2), (1, 3), (1, 4), (3, 4), (4, 2), (2, 3)}, and

J = {(q, r), (s, p) : (p, q, r, s) ∈ D} = {(2, 3), (3, 4), (4, 2), (4, 1), (2, 1), (3, 1)}.

For D ∈ D , E({D} ,F ) stands for the collection of hyperedges of all cycles

constructed by D and F . Given D = (p, q, r, s), E({D} ,F ) contains

inline hyperedges with partite sets Vp and Vq , and with partite sets Vr and

Vs , and

joint hyperedges with partite sets Vq and Vr , and with partite sets Vs and

Vp .

Since any pair of elements in {1, 2, 3, 4} occurs once in I and once in J ,

each pair of partite sets is used to construct inline hyperedges once and joint

hyperedges once.
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Note that the number of hyperedges of all cycles in C is 24m2(2m − 1)

counted repeatedly. Since the number of hyperedges of Type 2 in K
(3)
4(2m)

is also 24m2(2m − 1), it suffices to show that each hyperedge of Type 2 is

contained in at most one cycle in C .

Let e ∈ E(T2(K
(3)
4(2m))) be a hyperedge with 〈x, y〉 -partite sets, say e =

{axu, axv , a
y
d} . By the property of D , x and y appear together in I or J once.

By Lemma 2.9, e cannot be both inline hyperedge of a cycle and joint hyperedge

of another cycle at the same time. Therefore, without loss of generality, there

exists unique D = (x, y, z, w) ∈ D such that e is an inline hyperedge in

E({D} ,F ).

Moreover, since F is a 1-factorization of K2m , there exists unique F =

{{j, f(j)} : j ∈ {1, 2, . . . ,m}} ∈ F such that e ∈
⋃m
t=1E(Ct(D,F )).

To conclude that e is in at most one cycle, it suffices to show that inline

hyperedges with 〈x, y〉 -partite sets of the same length in
⋃m
t=1E(Ct(D,F )) are

distinct. Let λ ∈ L \ {0} . By Lemma 2.9(i), since C0(D,F ) has only one

hyperedge of length λ with 〈x, y〉 -partite sets, such hyperedge can be either

{axi , axf(i), a
y
i−λ} or {axi , axf(i), a

y
f(i−λ)} for unique i . For t ∈ {1, 2, . . . ,m− 1} ,

since Ct(D,F ) is the tth rotation of C0(D,F ), and the rotation preserves

the lengths of hyperedges, the cycle Ct(D,F ) also contains exactly one hyper-

edge of length λ with 〈x, y〉 -partite sets, namely {api+t, a
p
f(i+t), a

q
i−λ+t} . Since

{api+t, a
p
f(i+t), a

q
i−λ+t} 6= {a

p
i+w, a

p
f(i+w), a

q
i−λ+w} if and only if t 6= w , all hy-

peredges of length λ are distinct. Hence each hyperedge is contained in at most

one cycle in C . Therefore C is a Hamiltonian decomposition of T2(K
(3)
4(2m)).

2

2.2.2 m is even

Let m be an even integer, say m = 2µ . We have two initial cycles C0(D,F )

and C0(D,F ), each of which is rotated which rotates µ − 1 times to create

additional µ− 1 cycles. For t ∈ {0, 1, . . . , µ− 1},

Ct(D,F ) = (P t1 P t2) and Ct(D,F ) = (P
t

1 P
t

2)
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where

(x, y) =

 (p, q), if j = 1,

(r, s), if j = 2.
, and

P tj = ax1+t axf(1+t) ayf(2µ+t) ay2µ+t

ax2+t axf(2+t) ayf(2µ−1+t) ay2µ−1+t
...

...
...

...

axµ+t axf(µ+t) ayf(µ+1+t) ayµ+1+t

axµ+1+t axf(µ+1+t) ayf(µ+t) ayµ+t
...

...
...

...

ax2µ−1+t axf(2µ−1+t) ayf(2+t) ay2+t

ax2µ+t axf(2µ+t) ayf(1+t) ay1+t,

P
t

j = axf(1+t) ax1+t ay2µ+t ayf(2µ+t)
axf(2+t) ax2+t ay2µ−1+t ayf(2µ−1+t)

...
...

...
...

axf(µ+t) axµ+t ayµ+1+t ayf(µ+1+t)

axf(µ+1+t) axµ+1+t ayµ+t ayf(µ+t)
...

...
...

...

axf(2µ−1+t) ax2µ−1+t ay2+t ayf(2+t)
axf(2µ+t) ax2µ+t ay1+t ayf(1+t),

We say that Ct(D,F ) and Ct(D,F ) are the tth rotation of C0(D,F ) and

C0(D,F ), respectively.

Example 2.11. An illustration of the two initial cycles C0(D,F ) and C0(D,F )

which are in the construction of a Hamiltonian decomposition of K
(3)
4(2m) when

m = 6 , D = (1, 3, 4, 2) and F = {{j, f(j)} : j ∈ {1, 2, 3, 4, 5, 6}} . In the Fig-

ures 3(a) and 4(a), each vertex ax` in the initial cycles C0(D,F ) and C0(D,F )

is represented by its subscript ` . Moreover, Figures 3(b) and 4(b) illustrate

the lengths of hyperedges. As each three consecutive vertices along the cycle

form a hyperedge, we label its length at the middle vertex of such hyperedge.
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0 1′

2 3′
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0 1′

2 3′
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1′ 2

3′ 4

5′ 0

1′ 2

3′ 4

5′ 0

(a) (b)

Figure 3: (a) C0(D,F ) of T2(K
(3)
4(12)), and (b) the lengths of hyperedges in

C0(D,F ).
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4 f (4)

3 f (3)
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1 2′
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V4

0′ 1
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0′ 1

2′ 3
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1 2′

3 4′

5 0′

1 2′

3 4′

5 0′

(a) (b)

Figure 4: (a) C0(D,F ) of T2(K
(3)
4(12)), and (b) the lengths of hyperedges in

C0(D,F ).

Theorem 2.12. The subhypergraph T2(K
(3)
4(2m)) has a Hamiltonian decompo-

sition when m is even.

Proof. Let m = 2µ , D = {(1, 2, 3, 4), (1, 3, 4, 2), (1, 4, 2, 3)} , F a 1-factorization

of K2m([2m]) and

C = {Ct(D,F ), Ct(D,F ) : t ∈ {0, 1, . . . , µ− 1}, D ∈ D , and F ∈ F}.

Let D ∈ D and F ∈ F , written

D = (p, q, r, s) and F = {{j, f(j)} : j ∈ {1, 2, . . . ,m}}.

Similar to Lemma 2.4, the cycles Ct(D,F ) and Ct(D,F ) constructed by D

and F are Hamiltonian cycles of T2(K
(3)
4(2m)), thus C is a collection of Hamil-

tionian cycles of T2(K
(3)
4(2m)). It remains to show that C is a decomposition of

T2(K
(3)
4(2m)).
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We write 8m hyperedges in E(C0(D,F )) and 8m hyperedges in E(C0(D,

F )) in order around the cycles as e1, e2, . . . , e8m , and e1, e2, . . . , e8m , respec-

tively, beginning with

e1 = {ap1, a
p
f(1), a

q
f(2µ)} and e2 = {apf(1), a

q
f(2µ), a

q
2µ} and so on, and

e1 = {apf(1), a
p
1, a

q
2µ} and e2 = {ap1, a

q
2µ, a

q
f(2µ)} and so on.

Note that C0(D,F ) is defined exactly the same as in Section 2.2.1, except

even m . Besides, here we rotate C0(D,F ) to construct additional m
2 −1 cycles

instead of m− 1 cycles.

First we have that e2m is an inline hyperedge of length 0 with 〈p, q〉 -partite

sets, and

e4m is a joint hyperedge of length 0 with 〈r, q〉 -partite

sets.

For ` ≡ 0, 1 (mod 4), ` ≤ 4m and ` 6= 2m, 4m , e` is an inline hyperedge

with 〈p, q〉 -partite sets in C0(D,F ) of length λ 6= 0. Tables 4 and 5 show such

lengths.

` 4 8 12 . . . 2m− 4 2m 2m+ 4 2m+ 8 2m+ 12 . . . 4m− 4 4m

Length of e` 2 4 6 . . . m− 2 0 2 4 6 . . . m− 2 0

Table 4: Lengths of e` where ` ≡ 0 (mod 4) and ` ≤ 4m .

` 1 5 9 . . . 2m− 3 2m+ 1 2m+ 5 . . . 4m− 3

Length of e` 1′ 3′ . . . (m− 1)′ 1′ 3′ 5′ . . . (m− 1)′

Table 5: Lengths of e` where ` ≡ 1 (mod 4) and ` ≤ 4m .

Since m is even, the lengths of e` and e2m+` are the same for ` ∈ {1, 2, . . . ,
2m} . In particular, for ` ∈ {1, 2, . . . , 2m−1} , e2m+` is the µth rotation of e` .

Let L1 = {2, 4, . . . ,m − 2} ∪{1′, 3′ . . . , (m − 1)′}. Therefore, the set of the

lengths of 2m− 2 inline hyperedges with 〈p, q〉 -partite sets in C0(D,F ) is

{L(p,q)(e`) : ` ≡ 0, 1 (mod 4), ` ∈ {0, 1, . . . , 4m− 2} \ {2m}} = 2L1.

For the lengths of e` where ` ≡ 2, 3 (mod 4) and ` ≤ 4m , we have the

similar results for hyperedges with 〈q, p〉-partite sets and 〈q, r〉 -partite sets as
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follows. e2m−1 and e4m−1 are hyperedges of length 0, and the set of lengths

of 2m− 2 inline hyperedges with 〈q, p〉-partite sets in C0(D,F ) is

{L(p,q)(e`) : ` ≡ 2, 3 (mod 4), ` ∈ {0, 1, . . . , 4m− 2} \ {2m− 1}} = 2L1.

Next, consider the lengths of hyperedges in C0(D,F ). Observe that Ct(D,F )

is a modification of Ct(D,F ) by swapping axi and axf(i) for all x ∈ {p, q, r, s}
and i ∈ [m] . Thus for ` ∈ {1, 2, . . . , 8m} and λ ∈ {0, 1, . . . ,m− 1} ,

L(e`) = λ′ if and only if L(e`) = λ,

L(e`) = λ if and only if L(e`) = λ′.

Then the lengths of all joint hyperedges and inline hyperedges e2m−1, e2m,

e2m−1 and e2m are 0′ . Let L2 = {2′, 4′, . . . , (m− 2)′} ∪{1, 3 . . . , m− 1}. The

remaining 2m− 2 inline hyperedges with 〈p, q〉 -partite sets in C0(D,F ) have

lengths spanning the multiset 2L2 (See Tables 6 and 7). Also, 2m − 2 inline

hyperedges with 〈q, p〉 -partite sets have lengths spanning the multiset 2L2 .

` 4 8 12 . . . 2m− 4 2m 2m+ 4 2m+ 8 2m+ 12 . . . 4m− 4 4m

Length of e` 2′ 4′ 6′ . . . (m− 2)′ 0′ 2′ 4′ 6′ . . . (m− 2)′ 0′

Table 6: Lengths of e` where ` ≡ 0 (mod 4) and ` ≤ 4m .

` 1 5 9 . . . 2m− 7 2m− 3 2m+ 1 2m+ 5 . . . 4m− 3

Length of e` 1′ 3′ 5′ . . . (m− 1)′ 1′ 3′ 5′ . . . (m− 1)′

Table 7: Lengths of e` where ` ≡ 1 (mod 4) and ` ≤ 4m .

Hence inline hyperedges with 〈p, q〉-partite sets (or 〈q, p〉 -partite sets) in

both C0(D,F ) and C0(D,F ) except those of lengths 0 and 0′ have lengths

spanning the multiset 2L1 ∪ 2L2 . Remark that the multiset 2L1 ∪ 2L2 =

2L \ 2{0, 0′} .

In conclusion, we have that for λ1 ∈ L1 , C0(D,F ) contains exactly two

hyperedges of length λ1 with 〈p, q〉-partite sets, and for λ2 ∈ L2 , C0(D,F )

contains exactly two hyperedges of length λ2 with 〈p, q〉 -partite sets.

For D ∈ D and F ∈ F , E(D,F ) stands for the collection of hyper-

edges of all cycles constructed by D and F . In other words, E(D,F ) =⋃µ−1
t=0 E(Ct(D,F )) ∪

⋃µ−1
t=0 E(Ct(D,F )).
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We will use the lengths of hyperedges in the cycles to prove that C is the

decomposition of T2(K
(3)
4(2m)). By the similar argument as in Theorem 2.10, we

count the number of hyperedges of all cycles in C and in T2(K
(3)
4(2m)). Then it

suffices to show that any hyperedge of Type 2 with 〈x, y〉 -partite sets, namely

e , is contained in at most one cycle in C . From the proof of Theorem 2.10,

the essential property of D implies that each pair of partite sets is used to

construct inline hyperedges once and joint hyperedges once. Since D has such

essential property and F is a 1-factorization, without loss of generality, there

exists D′ = (x, y, z, w) ∈ D and F ′ = {{j, f ′(j)} : j ∈ {1, 2, . . . ,m}} ∈ F

such that e ∈ E(D′, F ′).

Since hyperedges in the same Hamiltonian cycle are always distinct, to

conclude that e is in at most one cycle, we will claim that hyperedges with

〈x, y〉-partite sets of the same length in E(D′, F ′) are all distinct. The lengths

of hyperedges in C0(D′, F ′) and hyperedges in C0(D′, F ′) are in L1 ∪ {0}
and L2 ∪ {0′} , respectively. Since L1 ∪ {0} and L2 ∪ {0′} are disjoint, it is

enough to show that hyperedges of the same length with 〈x, y〉 -partite sets in⋃µ−1
t=0 E(Ct(D

′, F ′)) are distinct.

Let λ ∈ L1\{0} . Since C0(D′, F ′) contains exactly two distinct hyperedges

of length λ with 〈x, y〉-partite sets, such two hyperedges can be either a pair

of hyperedges e1 = {axi , axf(i) , ayi−λ} , e2 = {axi+µ, axf(i+µ), a
y
i+µ−λ} or e1 =

{axi , axf(i), a
y
f(i−λ)} , e2 = {axi+µ, axf(i+µ) , ayf(i+µ−λ), } for unique i . By the

proof of Theorem 2.10, hyperedges of the same length obtained by the rotation

are all distinct. Observe that we rotate each initial cycle in our construction

at most µ− 1 times. Although e1 and e2 are the µth rotation of each other,

hyperedges obtained from rotating e1 are different from hyperedges obtained

from rotating e2 . Hence hyperedges with 〈x, y〉 -partite sets of length λ in⋃µ−1
t=0 E(Ct(D

′, F ′)) are all distinct. Our claim holds. Thus any hyperedges of

Type 2 is contained in at most one cycle in C , and therefore C is a Hamiltonian

decomposition of T2(K
(3)
4(2m)). 2

Therefore by Theorems 2.2, 2.10 and 2.12, it can be concluded that K
(3)
4(2m)

has a Hamiltonian decomposition for all positive integer m .
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