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Abstract

In this paper we introduce a new generalization of small submodules,
namely γ-small submodules. We call a submodule K of a module M ,
γ-small provided M = K + L with M/L noncosingular, implies M =
L. Applying this concept, we define a generalization of lifting modules
entitled γ-lifting modules and investigate their some general properties.
It is proved that any supplement submodule of a γ-lifting module is γ-
lifting.

1 Introduction

Let M be a module and L a submodule of M (we denote it by L ≤ M). Then
L is said to be small in M (denoted by L � M) in case L + T �= M for every
proper submodule T of M . The module M is called lifting, in case for every
submodule N of M there is a direct summand D of M contained in N such
that N/D � M/D. We say that a submodule N of M is supplement in M , if
there is a submodule K of M such that M = N +K and N ∩K � N . Also M
is called supplemented provided every submodule of M has a supplement in M .
As a generalization of supplemented modules, a module M is said to be amply
supplemented if M = N + K implies N has a supplement L which is contained
in K.

A module M is called small if there exist modules L ≤ K such that M ∼=
L � K. For a ring R and a right R-module M let Z(M) = RejM (S) =
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⋂{Kerf | f : M → U, U ∈ S} =
⋂{K ⊆ M | M/K ∈ S} where S denotes

the class of all small right R-modules. If Z(M) = 0 (Z(M) = M), then M is
called a cosingular (noncosingular) module (see [3]). Note that by Z

2
(M) we

mean Z(Z(M)).
In last decades, small submodules and relevant concepts were widely stud-

ied and investigated. Many researchers tried to introduce and consider some
notions in module theory closely related to smallness. Undoubted, one of the
most famous concept in the theory of rings and modules is lifting modules.
Maybe firstly, this concept introduced in the 1970s. After that we have a large
number of works which their main subjects were lifting modules and their var-
ious generalizations (for example, [1]).

Zhou in [5] introduced a generalization of small submodules namely δ-small
submodules via the concept of singular modules. In fact, he called a submodule
N of a module M a δ-small submodule if M �= N +K for every proper submod-
ule K of M with M/K singular. General properties of δ-small submodules and
a nice characterization of them are also provided in [5]. He defined δ(M) for a
module M to be RejM (U) where U stands for the class of all simple singular
right R-modules. This is a motivation for our study here to introduce a new
generalization of small submodules. In fact, we consider the class of all simple
noncosingular (injective) right R-modules in the definition of δ(M) and as a
consequence in the definition of δ-small submodules we should change singular
modules to noncosingular modules. By the way, we call a submodule N of a
module M , γ-small provided M �= N + K for all proper submodules K of M
with M/K noncosingular. We define γ(M) to be sum of all δ-small submodules
of M . We also show that γ(M) is equal to RejM (SN ) where SN stands for
the class of all simple noncosingular (injective) right R-modules. We try to
study some natural and general properties of γ-small submodules. γ-coclosed
submodules are introduced and their some natural properties are studied. As
an application, we define γ-lifting modules. We say a module M is γ-lifting if
for every submodule N of M there is a direct summand D of M contained in N
such that N/D is γ-small in M/D. It is shown that a supplement submodule
of a γ-lifting module is γ-lifting.

In what follows, J(R) denotes the Jacobson radical of a ring R and Rad(M)
stands for the radical of a module M . For any unexplained terminologies we
refer to [2].

2 γ-small submodules and γ-coclosed submod-
ules

We start this section by providing the definition of a new generalization of small
submodules. If in the definition of small submodules, we restrict submodules
of the module the those, whose natural factor modules are noncosingular, we
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produce the following.

Definition 2.1. Let N be a submodule of M . Then we say that N is γ-small
in M ,(denoted by N �γ M) if M = N + X with M/X noncosingular implies
M = X. In other words, M �= N + X for every proper submodule X of M
with M/X noncosingular.

It is clear that every small submodule of a module is γ-small in that module.
We list some properties of γ-small submodules that are similar to those for

small submodules.

Proposition 2.2. Let M be an R-module. Then the following statements hold.
(1) Let A ≤ B ≤ M . Then B �γ M if and only if A �γ M and B

A �γ
M
A .

(2) Let A, B be submodules of M with A ≤ B. If A �γ B, then A �γ M .
(3) Let f : M → M ′ be an epimorphism such that A �γ M , then f(A) �γ

M ′.
(4) Let M = M1 ⊕ M2 be an R-module and let A1 ≤ M1 and A2 ≤ M2.

Then A1 ⊕ A2 �γ M1 ⊕ M2 if and only if A1 �γ M1 and A2 �γ M2.
(5) Let M be an R-module and A ≤ B. If B is a supplement submodule in

M and A �γ M , then A �γ B.

Proof. (1) (⇒) Suppose that B �γ M and let U be a submodule of M such
that M = A + U with M/U noncosingular. Since A ≤ B, then M = B + U .
Being B a γ-small submodule of M implies M = U . Thus A �γ M . Now
assume that M/A = B/A+L/A for some submodule L of M and M/A

L/A
∼= M/L

is noncosingular. Then M = B + L combining with B �γ M yields that
M = L.

(⇐) Suppose that A �γ M and B/A �γ M/A. To prove B �γ M suppose
M = B + U with M/U noncosingular. So M/A = B/A + (U + A)/A. Note
that M/A

(U+A)/A
∼= M/(U + A) is noncosingular. Since B/A �γ M/A, then

M/A = (U + A)/A which implies that M = U + A. As A �γ M and M/U is
noncosingular we conclude that M = U . It follows that B �γ M .

(2) Suppose that A �γ B. Let M = A+U such that M/U is noncosingular.
Since B = B ∩ M = B ∩ (A + U) = A + (B ∩ U) (by modular law), we have
B/(B ∩ U) ∼= (B + U)/U = M/U which implies B/(B ∩ U) is noncosingular.
By A �γ B we conclude that B = B ∩ U . Hence M = U .

(3) Let A �γ M and f(A) + Y = M ′ for a submodule Y of M ′ such
that M ′/Y is noncosingular. It is easy to check that A + f−1(Y ) = M . Being
M/f−1(Y ) a homomorphic image of M ′/Y implies M/f−1(Y ) is noncosingular.
Hence M = f−1(Y ). It is easy to verify that M ′ = Y .

(4) (⇒) Suppose that A1⊕A2 �γ M1 ⊕M2. Let p : M1 ⊕M2 → M1 be the
projection on M1. Since A1⊕A2 �γ M1⊕M2, then p(A1⊕A2) �γ p(M1⊕M2)
by (3). It follows that A1 �γ M1. Similarly A2 �γ M2.
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(⇐) Suppose that A1 �γ M1 and A2 �γ M2. Let A1 +A2 +X = M1 +M2

with (M1+M2)
X noncosingular. So (M1+M2)/(A2 +X) as a homomorphic image

of (M1 + M2)/X, is noncosingular. Since A1 �γ M1 +M2 by (2), we conclude
that A2 + X = M1 + M2. Now A2 �γ M1 + M2 implies X = M1 + M2 as
required.

(5) Let A �γ M and B be a supplement submodule of B′ in M . Then
M = B + B′ and B ∩ B′ � B. To show that A �γ B, let B = A + U
such that B/U is noncosingular. Then M = B + B′ = A + U + B′. Since
M/(U +B′) = (A+U +B′)/(U +B′) ∼= A/(A∩(U +B′)) and A/(A∩(U +B′))
is a homomorphic image of A/(A ∩ U) ∼= B/U , then it will be noncosingular.
Hence M = U + B′ as A �γ M . Now being B ∩ B′ a small submodule of
B implies B = B ∩ M = B ∩ (U + B′) = U + (B ∩ B′) = U . It follows that
A �γ B. �

The following provides a characterization of a module M such that every
submodule of M is γ-small in M .

Proposition 2.3. Let M be a module. Consider the following:
(1) M �γ M ;
(2) Each submodule of M is γ-small in M ;
(3) Non of nonzero homomorphic images of M is noncosingular;
(4) Z(M) � M .
Then (1) ⇔ (2) ⇔ (3) ⇒ (4). They are equivalent in case, M is amply

supplemented.

Proof. (1) ⇒ (2) It follows from Proposition 2.2(1).
(2) ⇒ (3) Suppose that every submodule of M is γ-small in M . Consider a

submodule X of M such that M/X is noncosingular. Since M = M + X and
M �γ M , then M = X.

(3) ⇒ (1) Let X be a submodule of M such that M/X is noncosingular.
By assumption X = M which shows that M �γ M .

(3) ⇒ (4) Let X be a proper submodule of M . Then Z(M/X) �= M/X. It
is easy to check that Z(M) + X �= M which implies that Z(M) � M .

(4) ⇒ (3) Let M be amply supplemented and Z(M) � M . Suppose that
M/X be a noncosingular homomorphic image of M . Then M/X = Z(M/X) =

Z
2
(M/X) = Z

2
(M)+X

X . Since Z(M) is a cosingular module, then Z
2
(M) = 0.

Therefore, M/X = 0. �

It is clear that every small submodule of a module is γ-small. We provide
some examples to indicate that the converse may not hold.

Example 2.4. (1) Let M = Z as a module over itself. Since every homomor-
phic image of M is cosingular, then every submodule of M is γ-small in M by
Proposition 2.3. Note that non of nonzero submodules of M is small in M .
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(2) Let M be a semisimple cosingular module. Since every nonzero homo-
morphic image of M is cosingular, then every submodule of M is γ-small in M
by Proposition 2.3 while the only small submodule of M is the zero submodule.

The following presents some conditions which under two concepts small and
γ-small coincide.

Proposition 2.5. Let M be a module and N ≤ M . Then in each of the
following cases N � M if and only if N �γ M :

(1) N is noncosingular.
(2) M is noncosingular.
(3) N/D � M/D where D is a noncosingular direct summand of M .

Proof. (1) Let N �γ M and N be noncosingular. Let also N +X = M . Then
we have N

N∩X
∼= M

X is noncosingular. Hence M = X. It follows that N � M .
(2) Let N �γ M and N + X = M . Then M

X
is noncosingular as M is

noncosingular. Therefore by assumption M = X.
(3) Set D ⊕ D′ = M and N/D � M/D. Then N + D′ = M . As D is

noncosingular and N �γ M , we have M = D′. Therefore, D = 0 implying
that N � M . �

Recall that a ring R is a right V -ring provided every simple right R-module
is injective. It follows from [3, Proposition 2.5 and Corollary 2.6] that every
right R-module over a right V -ring R is noncosingular. It follows from last
proposition that the only γ-small submodule of an R-module over a right V -
ring R is zero.

It is known that if M � M , then M = 0. But the following example shows
that in γ-small case, it is not true.

Example 2.6. Consider Z4 as a module over itself. Suppose Z4+X = Z4 with
Z4
X noncosingular. We know Z(Z4) = {0, 2} �= Z4 and Z(Z4) �= 0. Hence the
only noncosingular homomorphic image of Z4 is Z4

Z4
. It follows by Proposition

2.3 that Z4 �γ Z4.

In contrast to small submodules, if N is a γ-small direct summand of M ,
then N need not be zero. Let M (which is decomposable) be a n-generated
module (n ≥ 2) over a Dedekind domain R. Consider a nontrivial decomposi-
tion M1 ⊕ M2 = M for the R-module M . Since every homomorphic image of
M is cosingular, then Mi �γ M . In fact, every submodule of M is γ-small in
M by Proposition 2.3.

It is natural to consider an analogue of the sum of all small submodules
in γ-case. Let M be a module. We define γ(M) to be the sum of all γ-
small submodules of M . It is clear that Rad(M) ⊆ γ(M). Note also that,
Rad(M) = γ(M) holds for a noncosingular module M . The following contain
examples of modules that shows the last inclusion is strict.
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Example 2.7. (1) It is clear that 0 = Rad(ZZ) ⊂ γ(ZZ) = Z.
(2) Let M be an amply supplemented module with Z

2
(M) = 0 (for example,

M is cosingular). Then γ(M) �= 0. In contrary, suppose γ(M) = 0. Then
there is a proper submodule X of M such that M

X
is noncosingular. Now,

M
X = Z

2
(M

X ) = Z
2
(M)+X

X = 0, which is a contradiction. Therefore an amply

supplemented module M with Z
2
(M) = 0 has at least a nonzero γ-small sub-

module. As a conclusion, for every m ∈ N we conclude that γ(Zm) �= 0. In
particular for Zm as an Z-module we have Rad(Zm) ⊂ γ(Zm) = Zm.

Lemma 2.8. Let N be a proper submodule of M with M
N noncosingular. Let

x ∈ M \ N such that Rx + N = M . Then there is a maximal submodule K of
M with M

K
noncosingular and x /∈ K

Proof. Set A = {L ≤ M | N ⊆ L, M
L is noncosingular, x /∈ L}. Then A �= ∅

since N ∈ A. Suppose {Lα} is a chain in A. We prove A has a maximal
element. It is clear ∪Lα is a submodule of M and N ⊆ ∪Lα. It is obvious
that x /∈ ∪Lα. Note that M

∪Lα
is noncosingular as well as M

Lα
for each α ( M

∪Lα

is a homomorphic image of M
Lα

). Hence A has a maximal element say K.
Now, suppose K ⊂ T ⊆ M for a submodule T which properly contains K.
Then T /∈ A as K is the maximal element of A. Hence x ∈ T . Therefore
M = Rx + N ⊆ T . It shows that K is a maximal submodule of M . �

Last result leads us to find an equivalent set for γ(M).

Theorem 2.9. Let M be a module. Then γ(M) =
⋂{N ≤max M | M

N is
noncosingular}
Proof. Let N be an arbitrary maximal submodule of M with M

N
noncosingular.

Let also K �γ M . Consider the submodule N +K of M . If N +K = M , then
M = N as K �γ M , which is a contradiction. Hence N+K = N , which implies
K ⊆ N . So that

∑
K�γM K ⊆ N . Therefore

∑
K�γ M K ⊆ ⋂{N | N ≤max M

and M
N is noncosingular}. For the other side of inclusion, let x ∈ ⋂{N |

N ≤max M and M
N

is noncosingular}=P . Suppose that xR + L = M with M
L

noncosingular. If L �= M , then by Lemma 2.8, there is a maximal submodule
K′ of M with M

K′ noncosingular and x /∈ K′. But x ∈ P implies x ∈ K′, a
contraction. Therefore L = M . So xR �γ M , which implies x ∈ ∑

K�γM K.
It follows that P ⊆ ∑

K�γM K, which completes the proof. �

Remark 2.10. Let R be a ring and M be a right R-module. If SN denotes
the class of all simple noncosingular (injective) right R-modules, then γ(M) =
RejM (SN ).

We are ready to consider γ(RR) for a ring R. By Theorem 2.9, we have
γ(RR) =

⋂{I ≤ RR | R/I is simple injective }.



58 γ-small submodules and γ-lifting modules

Proposition 2.11. Let R be a ring. Then γ(RR) is the largest γ-small right
ideal of R.

Proof. Let γ(RR)+I = R where R/I is noncosingular. Then there is a maximal
right ideal I0 of R such that I ⊆ I0. Note that R/I0 is noncosingular as well
as R/I. By the definition of γ(R) we conclude that γ(RR) ⊆ I0 which implies
that I0 = R, a contradiction. Therefore I = R, as required. �

Let R be a ring. Then R is said to be a generalized V -ring (shortly GV -
ring) provided every simple singular right R-module is injective. In [4], the
authors proved that R is right GV if and only if every simple cosingular right
R-module is projective (see [4, Theorem 3.1]).

Proposition 2.12. Let R be a ring. Then every simple right R-module is small
(cosingular) if and only if γ(RR) = R. In particular, if R is a right GV -ring
and γ(RR) = R, then R is a semisimple ring.

Proof. If R is a right GV -ring and γ(RR) = R, then every simple right R-
module is projective by [4, Theorem 3.1]. Then R is semisimple. �

Let R be a commutative domain which is not a field. Then every finitely
generated R-module is small and hence cosingular. Therefore, every simple
R-module is small showing that γ(R) = R.

Example 2.13. (see also [4, Example 3.15]) Let F be a field and let R be the
ring of all upper triangular 2×2 matrices with entries from F . It is well-known

that R is a left and right perfect GV -ring. Note that J(R) =
(

0 F
0 0

)
which

implies that R is not semisimple. Therefore γ(RR) �= R and then there exists
a simple injective right R-module.

We should recall the definition of coclosed submodules of a module before
presenting an analogue in γ-case. Let M be a module and N a submodule of M .
Then N is called coclosed in case N/K � M/K implies N = K. We say that
N is a γ-coclosed submodule of M (denoted by N ≤γcc M) if N/X �γ M/X
implies N = X. It follows by definitions that every γ-coclosed submodule of
a module M is coclosed in M . But the converse may not hold. Let M be
a finitely generated R-module, where R is a Dedekind domain which is not
a field. Then any submodule of M is γ-small in M . If M has a nontrivial
decomposition M = ⊕i∈IMi, then Mi is a coclosed submodule of M while
non of nonzero submodules of M is γ-coclosed in M (for example consider the
Z-module Zn where n is square-free).

It is not hard to verify that for a noncosingular module the two concepts
coclosed and γ-coclosed are the same.

The following contains some properties of γ-coclosed submodules of a mod-
ule.
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Proposition 2.14. Let M be an R-module and let A ≤ B ≤ M . Then:
(1) Let A ≤γcc M . If X ≤ A ≤ M and X �γ M , then X �γ A.
(2) If B is γ-coclosed in M , then B

A is γ-coclosed in M
A .

(3) If A is γ-coclosed in M , then A is γ-coclosed in B. The converse holds,
in case B is γ-coclosed in M .

(4) Let C be a γ-coclosed submodule of M , then for any A ≤ B ≤ C,
B
A �γ

M
A if and only if B

A �γ
C
A .

Proof. (1) Suppose that A is a γ-coclosed submodule of M and X �γ M . To
show that X �γ A, let A = X + K such that A

K is noncosingular. Since A is
γ-coclosed in M , it is sufficient to show that A

K
�γ

M
K

. Let M
K

= A
K

+ B
K

where
M
B is noncosingular. Then M = A + B = X + K + B = X + B. But X �γ M

combining with being M
B noncosingular implies M = B. So we get the result.

(2) Assume that B is γ-coclosed in M . Let B/A
X/A �γ

M/A
X/A where A ≤ X ≤

B ≤ M . We show that B/X �γ M/X. To verify the last assertion, suppose
B/X + T/X = M/X with M/T noncosingular. Then B/A

X/A
+ (T+A)/A

X/A
= M/A

X/A
.

Note that M/(T +A) as a homomorphic image of M/T is noncosingular. Now,
since B/A

X/A �γ
M/A
X/A , we conclude that B/X �γ M/X. The fact that B is

γ-coclosed in M , implies B = X. Hence B/A = X/A. It follows that B/A is a
γ-coclosed submodule of M/A.

(3) Suppose that A is γ-coclosed in M and let X be a submodule of A such
that A

X �γ
B
X . Then by Proposition 2.2, A

X �γ
M
X . Being A a γ-coclosed

submodule of M implies A = X. Thus A is γ-coclosed in B. For the converse,
assume that A is γ-coclosed in B and B is γ-coclosed in M . Let X be a
submodule of A such that A

X �γ
M
X . Then by (2) we have B

X ≤γcc
M
X . Now

by (1) we conclude that A
X �γ

B
X . Since A is γ-coclosed in B, we must have

A = X. Thus A is γ-coclosed in M .
(4) Let B/A �γ C/A. Then by Proposition 2.2(2), B/A �γ M/A. For the

converse, let B/A �γ M/A. Since C ≤γcc M , by (2) we have C/A �γcc M/A.
Now the result follows from (1).

�

Definition 2.15. Let M be a module. Then we call M , γ-hollow provided
every proper submodule of M is γ-small in M .

Note that every finitely generated Z-module is γ-hollow while it might not
be a hollow module.

Clearly every hollow module is γ-hollow. Note that if M is a noncosingular
module, then M is hollow if and only if M is γ-hollow.

Proposition 2.16. Let M be an R-module. Then M is γ-hollow if and only
if every proper submodule A of M with M/A noncosingular, is small in M .
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Proof. (⇒) Let A be a proper submodule of M such that M
A

is noncosingular.
We show that A � M . Assume that there exists B ⊂ M such that M = A+B.
Since M is γ-hollow, then B �γ M . As M

A is noncosingular, then M = A which
contradicts A < M . Thus B = M .

(⇐) To show that M is γ-hollow, let A be a proper submodule of M . To
contrary, assume that A is not γ-small in M which means that there exists
a proper submodule B of M such that M

B is noncosingular and M = A + B.
Being B a small submodule of M implies A = M . �

Proposition 2.17. A nonzero homomorphic image of a γ-hollow module is
γ-hollow.

Proof. Let M be a γ-hollow module and N < M . Assume that L/N is a proper
submodule of M/N . Then L is a proper submodule of M which is γ-small in
M . Hence L/N �γ M/N by Proposition 2.2. �

3 γ-lifting modules

In this section we shall introduce a new generalization of lifting modules via
γ-small submodules.

Definition 3.1. Let M be a module. We say M is γ-lifting provided for every
submodule N of M there exists a direct summand D of M contained in N such
that N/D �γ M/D.

It is obvious that every lifting module is γ-lifting.

Example 3.2. (1) Every γ-hollow module is γ-lifting.
(2) Every lifting module is γ-lifting. But the converse does not hold. Con-

sider the Z-module Z. As Z is γ-hollow, it is γ-lifting. Note that Z is not a
lifting module.

(3) For a noncosingular module, two concepts lifting and γ-lifting coincide.

We can verify the following easily.

Proposition 3.3. Let M be an indecomposable module. Then M is γ-lifting
if and only if M is γ-hollow.

Theorem 3.4. Let M be a module. Then the following are equivalent:
(1) M is γ-lifting;
(2) For every submodule N of M , there exists a decomposition M = M1⊕M2

with M1 ⊆ N and N ∩ M2 �γ M2;
(3) Every submodule N of M can be written as a direct sum of a direct

summand K of M and a γ-small submodule L of M .
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Proof. (1) ⇒ (2) Let M be γ-lifting and N ≤ M . Then there is a direct
summand D of M contained in N such that N/D �γ M/D. Set M = D ⊕D′

for some submodule D′ of M . Let (D′∩N)+T = D′ with D′/T noncosingular.
Then N + T = N + D′ = M . It follows now that N/D + (T + D)/D = M/D.
Since (D′ ∩ N) + T = D′ we have (D′ ∩ N) + T + D = M . So M

T+D
∼=

D′∩N
(D′∩N)∩(T+D) = D′∩N

T∩N . As D′∩N
T∩N

∼= D′
T and D′

T is noncosingular, we conclude
that M

D = T+D
D . Hence M = T + D. Now the modular law implies T = D′.

(2) ⇒ (3) Let N ≤ M . then by (2) there is a decomposition M = M1 ⊕M2

such that M1 ⊆ N and N ∩ M2 �γ M2. By modularity we have N = M1 ⊕
(N ∩ M2).

(3) ⇒ (1) Conversely, let N be a submodule of M . Then there exists a
decomposition N = K ⊕ L with K a direct summand of M and L �γ M . We
shall verify N/K �γ M/K. Suppose that N/K + T/K = M/K such that
M/T is noncosingular. Then N + T = M . So L + T = M . Since L �γ M , we
conclude that T = M . Therefore, N/K �γ M/K. �

Proposition 3.5. Every supplement submodule of a γ-lifting module is γ-
lifting.

Proof. Let M be a γ-lifting module and let N be a supplement of a submodule
K in M . Then M = N + K and N ∩K � N . Suppose that L is a submodule
of N . Being M , γ-lifting there is a direct summand D of M such that L/D �γ

M/D. We shall prove that L/D �γ N/D. To verify it, let L/D+H/D = N/D
with N/H noncosingular. Then L + H = N which implies L + H + K = M .
So, L/D + (H + K)/D = M/D. Consider M/(H + K) which is isomorphic to

L
L∩(H+K)

. Note that L
L∩(H+K)

is a homomorphic image of the noncosingular
module L/(L ∩ H) ∼= N/H . Now, we conclude that H + K = M . Modularity
implies H + (N ∩K) = N and N ∩ K � N yields H = N as required. �

Proposition 3.6. Let M be a γ-lifting module and N a submodule of M . If for
every direct summand D of M , the submodule (D+N)/N is a direct summand
of M/N , then M/N is γ-lifting.

Proof. Let L/N be a submodule of M/N . Then there exists a direct sum-
mand D of M contained in L such that L/D �γ M/D. We shall show
that L/N

(D+N)/N �γ
M/N

(D+N)/N . To verify the assertion, suppose L/N
(D+N)/N +

T/N
(D+N)/N

= M/N
(D+N)/N

for a submodule T of M which contains D +N such that
M/N

(D+N)/N
T/N

(D+N)/N

is noncosingular which implies M/T is a noncosingular module. Then

L/N + T/N = M/N . So that L/D + T/D = M/D where M/T is noncosingu-
lar. As L/D is a γ-small submodule of M/D, we conclude that M/D = T/D
that completes the proof. Note also that by assumption (D +N)/N is a direct
summand of M/N . �
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Corollary 3.7. Let M be a module N a submodule of M such that for every
decomposition M = M1 ⊕ M2 we have N = (N ∩ M1) ⊕ (N ∩ M2). If M is
γ-lifting, then M/N is γ-lifting.

Proof. Let D be a direct summand of M . Set D⊕D′ = M . Then (D+N)/N +
(D′+N)/N = M/N . Note that N = (N∩D)⊕(N ∩D′). It is not hard to verify
that (D+N)∩(D′+N) = N which shows that (N+D)/N⊕(N+D′)/N = M/N .
Hence M/N is γ-lifting by Proposition 3.6. �

Corollary 3.8. Let M be a module and N a projection invariant (fully invari-
ant) submodule of M . If M is γ-lifting, then M/N is γ-lifting. In particular,
every homomorphic image of a duo (distributive) γ-lifting module is γ-lifting.

Proposition 3.9. Let M be a γ-lifting module. Then M/γ(M) is semisimple.

Proof. Let N/γ(M) be an arbitrary submodule of M/γ(M). Then there is a
decomposition M = D ⊕ D′ with D ⊆ N and N ∩ D′ �γ D′. It follows that
N/γ(M) + (D′ + γ(M))/γ(M) = M/γ(M). Note that N ∩ (D′ + γ(M)) =
γ(M)+(N ∩D′). As N ∩D′ �γ D′, it must be contained in γ(M) by Remark
2.10. Hence M/γ(M) is semisimple. �

Corollary 3.10. Let M be a γ-lifting module with γ(M) = 0. Then M is
semisimple. In particular, over a right V -ring R a right R-module M is γ-
lifting if and only if M is semisimple.

The next example shows that a direct sum of γ-lifting modules may not be
γ-lifting.

Example 3.11. (1) Let p be a prime integer and let n ≥ 1 be an integer.
Consider the Z-modules M1 = ⊕n

i=1Mi and M2 = ⊕i∈NMi, where Mi = Z(p∞)
for all i ∈ N. It is clear that M1 and M2 are noncosingular. By [2, Propositions
A.7 and A.8], the module M1 is lifting but M2 is not lifting. So M1 is γ-lifting
but M2 is not γ-lifting.

(2) Let R be an incomplete rank one discrete valuation ring with quotient
field K. Consider the R-module M = K2. Clearly, M is a noncosingular
module. By [2, Lemma A.5], the module M is not amply supplemented. So M
is not lifting. Therefore M is not a γ-lifting module. On the other hand, the
R-module K is γ-lifting since it is lifting (see [2, Proposition A.7]).

Theorem 3.12. Let M = M1 ⊕ M2 be a duo module. Then M is γ-lifting if
and only if M1 and M2 are γ-lifting.

Proof. Let M = M1 ⊕M2 be a duo module such that M1 and M2 are γ-lifting.
Suppose that N is an arbitrary submodule of M . Then N = (N ∩ M1) ⊕
(N ∩ M2). Since M1 and M2 are γ-lifting, there exist direct decompositions
N ∩ M1 = K1 ⊕ L1 and N ∩M2 = K2 ⊕ L2 such that Ki is a direct summand
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of Mi for i = 1, 2 and Li is a γ-small submodule of Mi for i = 1, 2 by Theorem
3.4. Then N = (N ∩M1)⊕(N ∩M2) = (K1⊕K2)⊕(L1⊕L2). It is obvious that
K1 ⊕K2 is a direct summand of M . Note that L1 ⊕L2 is a γ-small submodule
of M by Proposition 2.2(4). Hence M is a γ-lifting module by Theorem 3.4.
The converse follows from Proposition 3.5. �

The following provides a special decomposition of γ-lifting modules.

Proposition 3.13. Let M be an amply supplemented γ-lifting module. Then
M = Z

2
(M) ⊕ M ′ where Z

2
(M) is a noncosingular lifting module.

Proof. Assume that M is a γ-lifting module. By Theorem 3.4, there exist
submodules M1 and M2 of M such that M = M1 ⊕ M2, M1 ⊆ Z

2
(M) and

Z
2
(M) ∩ M2 �γ M2. Therefore Z

2
(M) = M1 ⊕ (Z

2
(M) ∩ M2). This implies

that Z
2
(M) ∩ M2 = Z

2
(M2) is a small submodule of M by Proposition 2.5.

As M is amply supplemented, we conclude that Z
2
(M2) is a noncosingular

submodule of M . This yields that Z
2
(M2) = 0 and Z

2
(M) = M1. Thus

M = Z
2
(M) ⊕ M2. Note that, since Z

2
(M) is γ-lifting and noncosingular , it

should be lifting. �
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